机械工程与力学 |
|
|
|
|
二维十次对称压电准晶含Griffith裂纹的平面问题 |
徐文帅1, 杨连枝2, 高阳1 |
1. 中国农业大学 理学院, 北京 100083;
2. 北京科技大学 土木与资源工程学院, 北京 100083 |
|
Plane problems of 2D decagonal quasicrystals of piezoelectric effect with Griffith crack |
XU Wen-shuai1, YANG Lian-zhi2, GAO Yang1 |
1. College of Science, China Agricultural University, Beijing 100083, China;
2. Civil and Environmental Engineering School, University of Science and Technology Beijing, Beijing 100083, China |
[1] SHECHTMAN D, BLECH I, GRATIAS D, et al.Metallic phase with long-range orientational order and no translational symmetry[J]. Physical Review Letters, 1984, 53(20):1951-1953.
[2] DING D H, YANG W G, HU C Z, et al. Generalized elasticity theory of quasicrystals[J]. Physical Review B, 1993,48(10):7003-7010.
[3] FAN T Y. Mathematical theory of elasticity of quasicrystals and its applications[M]. Berlin:Springer, 2011:67-69.
[4] STADNIK Z M. Physical properties of quasicrystals[M]. New York:Springer Science & Business Media, 1999.
[5] 董闯.准晶材料的形成机制,性能及应用前景[J].材料研究学报,1994,8(6):482-490. DONG Chuang. The formation mechanism, properties and application potentials of quasicrystalline materials[J]. Chinese Journal of Materials Research, 1994, 8(6):482-490.
[6] ALTAY G, DÖKMECI M C. On the fundamental equations of piezoelasticity of quasicrystal media[J]. International Journal of Solids and Structures, 2012, 49(23):3255-3262.
[7] HU C Z, WANG R H, DING D H, YANG W G. Piezoelectric effects in quasicrystals[J]. Physical Review B, 1997,56(5):2463-2469.
[8] YU J, GUO J H, PAN E N, et al. General solutions of plane problem in one-dimensional quasicrystal piezoelectric materials and its application on fracture mechanics[J]. Applied Mathematics and Mechanics-English Edition, 2015, 36(6):793-814.
[9] GAO C F, WANG M Z. Green's functions for generalized 2D problems in piezoelectric media with an elliptic hole[J]. Mechanics Research Communications, 1998,25(6):685-693.
[10] GAO Y, XU B X. Method on holomorphic vector functions and applications in two-dimensional quasicrystals[J]. International Journal of Modern Physics B, 2008, 22(6):635-643.
[11] 樊世旺,郭俊宏.一维六方压电准晶三角形孔边裂纹反平面问题[J].应用力学学报,2016,33(3):421-426. FAN Shi-wang, GUO Jun-hong. The antiplane problem of one-dimensional hexagonal quasicrystals with an edge crack emanating from a triangle hole[J]. Chinese Journal of Applied Mechanics, 2016, 33(3):421-426.
[12] HWU C. Anisotropic Elastic Plates[M]. New York:Springer, 2010:.
[13] SUO Z, KUO C M, BARNETT D M, et al. Fracture mechanics for piezoelectric ceramics[J]. Journal of the Mechanics and Physics of Solids, 1992, 40(4):739-765.
[14] SOSA H, KHUTORYANSKY N. New developments concerning piezoelectric materials with defects[J]. International Journal of Solids and Structures, 1996,33(23):3399-3414.
[15] GUO Y C, FAN T Y. A mode-Ⅱ Griffith crack in decagonal quasicrystals[J]. Applied Mathematics andMechanics-English Edition, 2001, 22(11):1311-1317.
[16] FU R, ZHANG T Y. Effects of an electric field on the fracture toughness of poled lead zirconate titanateceramics[J]. Journal of the American Ceramic Society, 2000, 83(5):1215-1218.
[17] MCMEEKING R, RICOEUR A. The weight function for cracks in piezoelectrics[J]. International Journal of Solids and Structures, 2003, 40(22):6143-6162.
[18] FAN T Y. Mathematical theory and methods of mechanics of quasicrystalline materials[J]. Engineering, 2013, 5(4):407-448.
[19] LEE J S, JIANG L Z. Exact electroelastic analysis of piezoelectric laminae via state space approach[J]. International Journal of Solids and Structures, 1996,33(7):977-990.
[20] YANG L Z, GAO Y, PAN E N, et al. An exact solution for a multilayered two-dimensional decagonal quasicrystal plate[J]. International Journal of Solids and Structures, 2014,51(9):1737-1749.
[21] 高存法,樊蔚勋.压电介质内裂纹问题的精确解[J].应用数学与力学,1999,20(1):47-53. GAO Cun-fa, FAN Wei-xun. A exact solution of crack problems in piezoelectric materials[J]. Applied Mathematics and Mechanics, 1999, 20(1):47-53. |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|