Please wait a minute...
浙江大学学报(工学版)  2018, Vol. 52 Issue (3): 487-496    DOI: 10.3785/j.issn.1008-973X.2018.03.010
机械工程与力学     
二维十次对称压电准晶含Griffith裂纹的平面问题
徐文帅1, 杨连枝2, 高阳1
1. 中国农业大学 理学院, 北京 100083;
2. 北京科技大学 土木与资源工程学院, 北京 100083
Plane problems of 2D decagonal quasicrystals of piezoelectric effect with Griffith crack
XU Wen-shuai1, YANG Lian-zhi2, GAO Yang1
1. College of Science, China Agricultural University, Beijing 100083, China;
2. Civil and Environmental Engineering School, University of Science and Technology Beijing, Beijing 100083, China
 全文: PDF(1396 KB)   HTML
摘要:

利用Stroh公式结合半逆解法,得到裂纹尖端附近的场解和场强度因子解,并利用权函数方法求解裂纹尖端的能量释放率.结合算例,探讨不同集中载荷作用下场强度因子和能量释放率的变化规律,并分析无限远处均匀载荷作用时裂尖附近的应力和位移,与椭圆孔以及相应的退化结果对比验证.结果表明,在裂尖附近作用集中载荷,对力强度因子以及电位移强度因子有显著影响,能量释放率是电场、声子场、相位子场、声子场-相位子场耦合效应以及电场-声子场耦合效应共同作用的结果,且应力强度因子、电位移强度因子和能量释放率共同表征了裂纹扩展过程中的应力集中以及扩展的大致方向.

Abstract:

The analytical expressions for the entire fields and field intensity factors in the coupled fields were obtained by utilizing the generalized Stroh formalism combined with semi-inverse method; the energy release rate of the crack tip was solved with the weight function method. What's more, through numerical examples, the change rules of field intensity factors derived from the concentrated loadings were discussed; the stress and displacement around crack tip with remote uniform loading were analyzed, and the results were compared with elliptical hole and degradation results. Results show that concentrated loadings near the crack tip have obvious influence for stress intensity factors and electric displacement intensity factor. Energy release rate is a combined result because of electric field, phonon field, phase field, phonon-phase coupling field and electric-phonon coupling effect. Intensity factors and energy release rate jointly characterize some rules of the stress concentration and the direction of crack propagation.

收稿日期: 2016-10-26 出版日期: 2018-09-11
CLC:  O34  
基金资助:

国家自然科学基金资助项目(11472299,51704015);教育部新世纪优秀人才支持计划资助项目(NCET-13-0552);大北农教育基金资助项目(1101-2415002).

通讯作者: 高阳,男,教授.orcid.org/0000-0003-1728-6992.     E-mail: gaoyangg@gmail.com
作者简介: 徐文帅(1991-),男,硕士,从事固体力学研究.orcid.org/0000-0002-3583-0851.E-mail:xuwenshuai1991@qq.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  

引用本文:

徐文帅, 杨连枝, 高阳. 二维十次对称压电准晶含Griffith裂纹的平面问题[J]. 浙江大学学报(工学版), 2018, 52(3): 487-496.

XU Wen-shuai, YANG Lian-zhi, GAO Yang. Plane problems of 2D decagonal quasicrystals of piezoelectric effect with Griffith crack. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2018, 52(3): 487-496.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2018.03.010        http://www.zjujournals.com/eng/CN/Y2018/V52/I3/487

[1] SHECHTMAN D, BLECH I, GRATIAS D, et al.Metallic phase with long-range orientational order and no translational symmetry[J]. Physical Review Letters, 1984, 53(20):1951-1953.
[2] DING D H, YANG W G, HU C Z, et al. Generalized elasticity theory of quasicrystals[J]. Physical Review B, 1993,48(10):7003-7010.
[3] FAN T Y. Mathematical theory of elasticity of quasicrystals and its applications[M]. Berlin:Springer, 2011:67-69.
[4] STADNIK Z M. Physical properties of quasicrystals[M]. New York:Springer Science & Business Media, 1999.
[5] 董闯.准晶材料的形成机制,性能及应用前景[J].材料研究学报,1994,8(6):482-490. DONG Chuang. The formation mechanism, properties and application potentials of quasicrystalline materials[J]. Chinese Journal of Materials Research, 1994, 8(6):482-490.
[6] ALTAY G, DÖKMECI M C. On the fundamental equations of piezoelasticity of quasicrystal media[J]. International Journal of Solids and Structures, 2012, 49(23):3255-3262.
[7] HU C Z, WANG R H, DING D H, YANG W G. Piezoelectric effects in quasicrystals[J]. Physical Review B, 1997,56(5):2463-2469.
[8] YU J, GUO J H, PAN E N, et al. General solutions of plane problem in one-dimensional quasicrystal piezoelectric materials and its application on fracture mechanics[J]. Applied Mathematics and Mechanics-English Edition, 2015, 36(6):793-814.
[9] GAO C F, WANG M Z. Green's functions for generalized 2D problems in piezoelectric media with an elliptic hole[J]. Mechanics Research Communications, 1998,25(6):685-693.
[10] GAO Y, XU B X. Method on holomorphic vector functions and applications in two-dimensional quasicrystals[J]. International Journal of Modern Physics B, 2008, 22(6):635-643.
[11] 樊世旺,郭俊宏.一维六方压电准晶三角形孔边裂纹反平面问题[J].应用力学学报,2016,33(3):421-426. FAN Shi-wang, GUO Jun-hong. The antiplane problem of one-dimensional hexagonal quasicrystals with an edge crack emanating from a triangle hole[J]. Chinese Journal of Applied Mechanics, 2016, 33(3):421-426.
[12] HWU C. Anisotropic Elastic Plates[M]. New York:Springer, 2010:.
[13] SUO Z, KUO C M, BARNETT D M, et al. Fracture mechanics for piezoelectric ceramics[J]. Journal of the Mechanics and Physics of Solids, 1992, 40(4):739-765.
[14] SOSA H, KHUTORYANSKY N. New developments concerning piezoelectric materials with defects[J]. International Journal of Solids and Structures, 1996,33(23):3399-3414.
[15] GUO Y C, FAN T Y. A mode-Ⅱ Griffith crack in decagonal quasicrystals[J]. Applied Mathematics andMechanics-English Edition, 2001, 22(11):1311-1317.
[16] FU R, ZHANG T Y. Effects of an electric field on the fracture toughness of poled lead zirconate titanateceramics[J]. Journal of the American Ceramic Society, 2000, 83(5):1215-1218.
[17] MCMEEKING R, RICOEUR A. The weight function for cracks in piezoelectrics[J]. International Journal of Solids and Structures, 2003, 40(22):6143-6162.
[18] FAN T Y. Mathematical theory and methods of mechanics of quasicrystalline materials[J]. Engineering, 2013, 5(4):407-448.
[19] LEE J S, JIANG L Z. Exact electroelastic analysis of piezoelectric laminae via state space approach[J]. International Journal of Solids and Structures, 1996,33(7):977-990.
[20] YANG L Z, GAO Y, PAN E N, et al. An exact solution for a multilayered two-dimensional decagonal quasicrystal plate[J]. International Journal of Solids and Structures, 2014,51(9):1737-1749.
[21] 高存法,樊蔚勋.压电介质内裂纹问题的精确解[J].应用数学与力学,1999,20(1):47-53. GAO Cun-fa, FAN Wei-xun. A exact solution of crack problems in piezoelectric materials[J]. Applied Mathematics and Mechanics, 1999, 20(1):47-53.

[1] 戴美玲, 杨福俊, 何小元, 代祥俊. 新型空心球结构的压缩力学性能[J]. 浙江大学学报(工学版), 2018, 52(11): 2043-2049.
[2] 刘承斌, 刘文耀, 陈伟球, 王惠明, 吕朝锋. 基于L-S理论的压电球壳广义热冲击分析[J]. 浙江大学学报(工学版), 2018, 52(6): 1185-1193.
[3] 秦洪远, 刘一鸣, 黄丹. 脆性多裂纹扩展问题的近场动力学建模分析[J]. 浙江大学学报(工学版), 2018, 52(3): 497-503.
[4] 解王惠明, 肖艳萍. 旋转功能梯度压电空心圆柱的精确[J]. J4, 2009, 43(6): 1172-1176.