浙江大学学报(工学版)  2018, Vol. 52 Issue (3): 487-496    DOI: 10.3785/j.issn.1008-973X.2018.03.010
 机械工程与力学

1. 中国农业大学 理学院, 北京 100083;
2. 北京科技大学 土木与资源工程学院, 北京 100083
Plane problems of 2D decagonal quasicrystals of piezoelectric effect with Griffith crack
XU Wen-shuai1, YANG Lian-zhi2, GAO Yang1
1. College of Science, China Agricultural University, Beijing 100083, China;
2. Civil and Environmental Engineering School, University of Science and Technology Beijing, Beijing 100083, China
 全文: PDF(1396 KB)   HTML

Abstract:

The analytical expressions for the entire fields and field intensity factors in the coupled fields were obtained by utilizing the generalized Stroh formalism combined with semi-inverse method; the energy release rate of the crack tip was solved with the weight function method. What's more, through numerical examples, the change rules of field intensity factors derived from the concentrated loadings were discussed; the stress and displacement around crack tip with remote uniform loading were analyzed, and the results were compared with elliptical hole and degradation results. Results show that concentrated loadings near the crack tip have obvious influence for stress intensity factors and electric displacement intensity factor. Energy release rate is a combined result because of electric field, phonon field, phase field, phonon-phase coupling field and electric-phonon coupling effect. Intensity factors and energy release rate jointly characterize some rules of the stress concentration and the direction of crack propagation.

 CLC: O34

 服务 把本文推荐给朋友 加入引用管理器 E-mail Alert 作者相关文章

引用本文:

XU Wen-shuai, YANG Lian-zhi, GAO Yang. Plane problems of 2D decagonal quasicrystals of piezoelectric effect with Griffith crack. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2018, 52(3): 487-496.

链接本文:

 [1] SHECHTMAN D, BLECH I, GRATIAS D, et al.Metallic phase with long-range orientational order and no translational symmetry[J]. Physical Review Letters, 1984, 53(20):1951-1953. [2] DING D H, YANG W G, HU C Z, et al. Generalized elasticity theory of quasicrystals[J]. Physical Review B, 1993,48(10):7003-7010. [3] FAN T Y. Mathematical theory of elasticity of quasicrystals and its applications[M]. Berlin:Springer, 2011:67-69. [4] STADNIK Z M. Physical properties of quasicrystals[M]. New York:Springer Science & Business Media, 1999. [5] 董闯.准晶材料的形成机制,性能及应用前景[J].材料研究学报,1994,8(6):482-490. DONG Chuang. The formation mechanism, properties and application potentials of quasicrystalline materials[J]. Chinese Journal of Materials Research, 1994, 8(6):482-490. [6] ALTAY G, DÖKMECI M C. On the fundamental equations of piezoelasticity of quasicrystal media[J]. International Journal of Solids and Structures, 2012, 49(23):3255-3262. [7] HU C Z, WANG R H, DING D H, YANG W G. Piezoelectric effects in quasicrystals[J]. Physical Review B, 1997,56(5):2463-2469. [8] YU J, GUO J H, PAN E N, et al. General solutions of plane problem in one-dimensional quasicrystal piezoelectric materials and its application on fracture mechanics[J]. Applied Mathematics and Mechanics-English Edition, 2015, 36(6):793-814. [9] GAO C F, WANG M Z. Green's functions for generalized 2D problems in piezoelectric media with an elliptic hole[J]. Mechanics Research Communications, 1998,25(6):685-693. [10] GAO Y, XU B X. Method on holomorphic vector functions and applications in two-dimensional quasicrystals[J]. International Journal of Modern Physics B, 2008, 22(6):635-643. [11] 樊世旺,郭俊宏.一维六方压电准晶三角形孔边裂纹反平面问题[J].应用力学学报,2016,33(3):421-426. FAN Shi-wang, GUO Jun-hong. The antiplane problem of one-dimensional hexagonal quasicrystals with an edge crack emanating from a triangle hole[J]. Chinese Journal of Applied Mechanics, 2016, 33(3):421-426. [12] HWU C. Anisotropic Elastic Plates[M]. New York:Springer, 2010:. [13] SUO Z, KUO C M, BARNETT D M, et al. Fracture mechanics for piezoelectric ceramics[J]. Journal of the Mechanics and Physics of Solids, 1992, 40(4):739-765. [14] SOSA H, KHUTORYANSKY N. New developments concerning piezoelectric materials with defects[J]. International Journal of Solids and Structures, 1996,33(23):3399-3414. [15] GUO Y C, FAN T Y. A mode-Ⅱ Griffith crack in decagonal quasicrystals[J]. Applied Mathematics andMechanics-English Edition, 2001, 22(11):1311-1317. [16] FU R, ZHANG T Y. Effects of an electric field on the fracture toughness of poled lead zirconate titanateceramics[J]. Journal of the American Ceramic Society, 2000, 83(5):1215-1218. [17] MCMEEKING R, RICOEUR A. The weight function for cracks in piezoelectrics[J]. International Journal of Solids and Structures, 2003, 40(22):6143-6162. [18] FAN T Y. Mathematical theory and methods of mechanics of quasicrystalline materials[J]. Engineering, 2013, 5(4):407-448. [19] LEE J S, JIANG L Z. Exact electroelastic analysis of piezoelectric laminae via state space approach[J]. International Journal of Solids and Structures, 1996,33(7):977-990. [20] YANG L Z, GAO Y, PAN E N, et al. An exact solution for a multilayered two-dimensional decagonal quasicrystal plate[J]. International Journal of Solids and Structures, 2014,51(9):1737-1749. [21] 高存法,樊蔚勋.压电介质内裂纹问题的精确解[J].应用数学与力学,1999,20(1):47-53. GAO Cun-fa, FAN Wei-xun. A exact solution of crack problems in piezoelectric materials[J]. Applied Mathematics and Mechanics, 1999, 20(1):47-53.
 [1] 戴美玲, 杨福俊, 何小元, 代祥俊. 新型空心球结构的压缩力学性能[J]. 浙江大学学报(工学版), 2018, 52(11): 2043-2049. [2] 刘承斌, 刘文耀, 陈伟球, 王惠明, 吕朝锋. 基于L-S理论的压电球壳广义热冲击分析[J]. 浙江大学学报(工学版), 2018, 52(6): 1185-1193. [3] 秦洪远, 刘一鸣, 黄丹. 脆性多裂纹扩展问题的近场动力学建模分析[J]. 浙江大学学报(工学版), 2018, 52(3): 497-503. [4] 解王惠明, 肖艳萍. 旋转功能梯度压电空心圆柱的精确[J]. J4, 2009, 43(6): 1172-1176.