Please wait a minute...
浙江大学学报(工学版)  2017, Vol. 51 Issue (12): 2320-2331    DOI: 10.3785/j.issn.1008-973X.2017.12.003
计算机与通信技术     
基于免疫克隆选择算法搜索GMM的脑岛功能划分
赵学武1,2, 冀俊忠1, 姚垚1
1. 北京工业大学 信息学部 多媒体与智能软件技术北京市重点实验室, 北京 100124;
2. 南阳师范学院 软件学院, 河南 南阳 473061
Insula functional parcellation by searching Gaussian mixture model (GMM) using immune clonal selection (ICS) algorithm
ZHAO Xue-wu1,2, JI Jun-zhong1, YAO Yao1
1. Beijing Municipal Key Laboratory of Multimedia and Intelligent Software Technology, Faculty of Information Technology, Beijing University of Technology, Beijing 100124, China;
2. College of Software, Nanyang Normal University, Nanyang 473061, China
 全文: PDF(4421 KB)   HTML
摘要:

为了得到更好的脑岛功能划分结构,加深人们对其功能组织性的理解,提出一种基于免疫克隆选择(ICS)算法搜索高斯混合模型(GMM)的脑岛功能划分方法(NICS-GMM).该方法基于功能磁共振成像(fMRI)数据,将GMM映射到抗体上;利用ICS算法搜索能够反映脑岛功能分布的GMM,并在搜索过程中融入具有抗噪能力的动态邻域信息,以提高其搜索质量;利用最优的GMM实现对脑岛的功能划分.在划分数为2~12的脑岛功能划分上,新方法搜得的GMM具有最高的似然分数,而且相应划分结果的轮廓系数也达到了最大值.真实脑岛fMRI数据上的实验结果表明,该方法不仅具有更强的全局搜索能力,还可以得到具有较高功能一致性与更强区域连续性的脑岛功能划分结构.

Abstract:

An insula functional parcellation method based on Gaussian mixture model (GMM) searched by immune clonal selection (ICS) algorithm, called NICS-GMM, was presented to get better functional parcellation structure of insula and deepen our understanding of its functional organization. Based on functional magnetic resonance imaging (fMRI) data, the proposed method first mapped a GMM onto an antibody; then ICS algorithm was performed to search a GMM that could reflect insula functional distribution. Meanwhile, dynamic neighborhood information with the anti-noise capability was integrated into the search process to improve search quality of ICS. Finally, insula functional parcellation was obtained by using GMMs with the highest lilelihood scores. The experiments were conducted on real fMRI data of insula with parcellation numbers of 2 to 12. As a result, GMMs obtained by NICS-GMM have the heighest likelyhood scores and the silhouette index values of the corresponding parcellateion results also reach the maximum. The experimental results demonstrate that the proposed method not only has better global search capability, but also can obtain functional parcellation structures of insula with higher functional consistency and stronger regional continuity.

收稿日期: 2017-01-09 出版日期: 2017-11-22
CLC:  TP391  
基金资助:

国家“973”重点基础研究发展规划资助项目(2014CB744601);国家自然科学基金资助项目(61375059,61672065);河南省科技厅科技攻关资助项目(142102210588);南阳师范学院校级青年科研资助项目(QN2017040).

通讯作者: 冀俊忠,男,教授,博士.orcid.org/0000-0001-6951-741X.     E-mail: jjz01@bjut.edu.cn
作者简介: 赵学武(1983-)男,讲师,博士生,从事计算智能、机器学习和神经信息学研究.orcid.org/0000-0003-3243-8210.E-mail:zhaoxuewuyonghu@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  

引用本文:

赵学武, 冀俊忠, 姚垚. 基于免疫克隆选择算法搜索GMM的脑岛功能划分[J]. 浙江大学学报(工学版), 2017, 51(12): 2320-2331.

ZHAO Xue-wu, JI Jun-zhong, YAO Yao. Insula functional parcellation by searching Gaussian mixture model (GMM) using immune clonal selection (ICS) algorithm. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2017, 51(12): 2320-2331.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2017.12.003        http://www.zjujournals.com/eng/CN/Y2017/V51/I12/2320

[1] HONNORAT N, EAVANI H, SATTERTHWAITE T D, et al. GraSP:geodesic graph-based segmentation with shape priors for the functional parcellation of the cortex[J]. Neuroimage, 2015, 106(2):207-221.
[2] MEZER A, YOVEL Y, PASTERNAK O, et al. Cluster analysis of resting-state fMRI time series[J]. Neuroimage, 2009, 45(4):1117-1125.
[3] 赵学武, 冀俊忠, 梁佩鹏. 面向fMRI数据的人脑功能划分[J]. 科学通报, 2016, 61(18):2035-2052. ZHAO Xue-wu, JI Jun-zhong, LIANG Pei-peng. The human brain functional parcellation based on fMRI data[J]. Chinese Science Bulletin, 2016, 61(18):2035-2052.
[4] VERCELLI U, DIANO M, COSTA T, et al. Node detection using high-dimension-al fuzzy parcellation applied to the insula cortex[J]. Neural Plasticity, 2016, 2016(5-6):1-8.
[5] KURTH F, ZILLES K, FOX P T, et al. A linkbetween the systems:functional differentiation andintegration within the human insula revealed by meta-analysis[J]. Brain Structure and Function, 2010,214(5-6):519-534.
[6] CHANG L J, YARKONI T, KHAW M W, et al. Decoding the role of the insula in human cogntion:functional parcellation and large-scale reverse inference[J]. Cerebral Cortex, 2013, 23(3):739-749.
[7] BEN D, PITSKEL N B, PELPHREY K A. Three systems of insula functional connectivity identified with cluster analysis[J]. Cerebral Cortex, 2011, 21(7):1498-1506.
[8] CAUDA F, COSTA T, TORTA D M, et al. Meta-analytic clustering of the insula cortex:characterizing the meta-analytic connectivity of the insula when involved in active tasks[J]. Neuroimage, 2012, 62(1):343-355.
[9] NORMI J S, FARRANT K, DAMARAJU E, et al. Dynamic functional network connectivity reveals unique and overlapping profiles of insula subdivisions[J]. Human Brain Mapping, 2016, 37(5):1770-1787.
[10] SHEN X, PAPADEMETRIS X, CONSTABLE R T. Graph-theory based parcellation of functional subunits in the brain from resting-state fMRI data[J]. Neuroimage, 2010, 50(3):1027-1035.
[11] JANSSEN R J, JYLÄNKI P, KESSELS R P C, et al. Probabilistic model-based functional parcellation reveals a robust, fine-grained subdivision of the striatum[J]. Neuroimage, 2015, 119(10):398-405.
[12] GOLLAND P, GOLLAND Y, MALACH R. Detection of spatial activation patterns as unsupervised segmentation of fMRI data[C]//International Confer ence on Medical Image Computing and Computer-as-sisted Intervention. MICCAI. Brisbane:Springer, 2006:110-118.
[13] 林琳, 王树勋. 基于自适应小生境混合遗传算法的说话人识别[J]. 电子学报, 2007, 35(1):8-12. LIN Lin, WANG Shu-xun. Speaker recognition based on adaptive niche hybrid genetic algorithms[J]. Chinese Journal of Electronics, 2007, 35(1):8-12.
[14] BEHESHTI Z, SHAMSUDDIN S M. A review of population-based metaheuristic algorithm[J]. International Journal of Advances in Soft Computing and Its Applications, 2013, 5(1):1-35.
[15] HAKTANIRTAR ULUTAS B, KULTUREL-KONAK S. A review of clonal selection algorithm and its applications[J]. Artificial Intelligence Review, 2011, 36(2):117-138.
[16] KOTANODA K, MATSUDA Y, SUGISHITA M. A spatio-temporal regression model for the analysis of functional MRI data[J]. Neuroimage, 2002, 17(3):1415-1428.
[17] OIKONOMOU V P, BLEKAS K. An adaptive regression mixture model for fMRI cluster analysis[J]. IEEE Transactions on Medical Imaging, 2013, 32(4):649-659.
[18] ARI Ç, AKSOY S, ARIKAN O. Maximum likelihood estimation of Gaussian mixture models using stochastic search[J]. Pattern Recognition, 2012, 45(7):2804-2816.
[19] BURNET F M. The clonal selection theory of acquired immunity[M]. London:Cambridge University Press, 1959.
[20] DE CASTRO L N, VON ZUBEN F J. An immun-ological approach to initialize centers of radial basis function neural networks[C]//In Proceeding of Brazilian Conference on Neural Networks. CBRN, Rio de Janeiro:[s.n.], 2001:79-84.
[21] PENG Y, LU B L. Hybrid learning clonal selectionalgorithm[J]. Information Sciences, 2015, 296(1):128-146.
[22] MEJIA A F, NEBEL M B, SHOU H, et al. Improving reliability of subject-level resting-state fMRI parcellation with shrinkage estimators[J]. Neuroimage, 2015, 112(5):14-29.
[23] 朱峰, 罗立民, 宋余庆,等. 基于自适应空间邻域信息GMM的图像分割[J]. 计算机研究与发展, 2011,48(11):2000-2007. ZHU Feng, LUO Li-min, SONG Yu-qing, et al.Adaptive spatially neighborhood information gaussian mixture model image segmentation[J]. Journal of computer Research and Development, 2011, 48(11):2000-2007.
[24] ZHANG Y, CASPERS S, FAN L, et al. Robust brain parcellation using sparse representation on resting-state fMRI[J]. Brain Structure and Function, 2014,220(6):1-15.
[25] HE Y. The HE LAB[EB/OL]. http://www.yonghelab.org/downloads/data.
[26] YAN C G. Data processing assistant for resting-state fMRI[EB/OL]. http://rfmri.org/DPARSF.
[27] FAN Y, NICKERSON L, LI H, et al. Functional connectivity-based parcellation of the thalamus:an unsupervised clustering method and its validity investigation[J]. Brain Connectivity, 2015, 5(10):620-630.
[28] KAHNT T, CHANG L J, PARK S Q, et al. Connectivity-based parcellation of the human orbitofrontal cortex[J]. Journal of the Society for Neuroscience, 2012, 32(18):6240-6250.
[29] MEIL M. Comparing clusterings:an information based distance[J]. Journal of Multivariate Analysis, 2007, 98(5):873-895.

[1] 韩勇, 宁连举, 郑小林, 林炜华, 孙中原. 基于社交信息和物品曝光度的矩阵分解推荐[J]. 浙江大学学报(工学版), 2019, 53(1): 89-98.
[2] 郑洲, 张学昌, 郑四鸣, 施岳定. 基于区域增长与统一化水平集的CT肝脏图像分割[J]. 浙江大学学报(工学版), 2018, 52(12): 2382-2396.
[3] 赵丽科, 郑顺义, 王晓南, 黄霞. 单目序列的刚体目标位姿测量[J]. 浙江大学学报(工学版), 2018, 52(12): 2372-2381.
[4] 何杰光, 彭志平, 崔得龙, 李启锐. 局部维度改进的教与学优化算法[J]. 浙江大学学报(工学版), 2018, 52(11): 2159-2170.
[5] 李志, 单洪, 马涛, 黄郡. 基于反向标签传播的移动终端用户群体发现[J]. 浙江大学学报(工学版), 2018, 52(11): 2171-2179.
[6] 王硕朋, 杨鹏, 孙昊. 听觉定位数据库构建过程优化[J]. 浙江大学学报(工学版), 2018, 52(10): 1973-1979.
[7] 魏小峰, 程承旗, 陈波, 王海岩. 基于独立边数的链码方法[J]. 浙江大学学报(工学版), 2018, 52(9): 1686-1693.
[8] 陈荣华, 王鹰汉, 卜佳俊, 于智, 高斐. 基于KNN算法与局部回归的网站无障碍采样评估[J]. 浙江大学学报(工学版), 2018, 52(9): 1702-1708.
[9] 张承志, 冯华君, 徐之海, 李奇, 陈跃庭. 图像噪声方差分段估计法[J]. 浙江大学学报(工学版), 2018, 52(9): 1804-1810.
[10] 刘洲洲, 李士宁, 李彬, 王皓, 张倩昀, 郑然. 基于弹性碰撞优化算法的传感云资源调度[J]. 浙江大学学报(工学版), 2018, 52(8): 1431-1443.
[11] 王勇超, 祝凯林, 吴奇轩, 鲁东明. 基于局部渲染的高精度模型自适应展示技术[J]. 浙江大学学报(工学版), 2018, 52(8): 1461-1466.
[12] 孙念, 李玉强, 刘爱华, 刘春, 黎威威. 基于松散条件下协同学习的中文微博情感分析[J]. 浙江大学学报(工学版), 2018, 52(8): 1452-1460.
[13] 郑守国, 崔雁民, 王青, 杨飞, 程亮. 飞机装配现场数据采集平台设计[J]. 浙江大学学报(工学版), 2018, 52(8): 1526-1534.
[14] 毕晓君, 王朝. 基于超平面投影的高维多目标进化算法[J]. 浙江大学学报(工学版), 2018, 52(7): 1284-1293.
[15] 张廷蓉, 滕奇志, 李征骥, 卿粼波, 何小海. 岩心三维CT图像超分辨率重建[J]. 浙江大学学报(工学版), 2018, 52(7): 1294-1301.