计算机与通信技术 |
|
|
|
|
基于免疫克隆选择算法搜索GMM的脑岛功能划分 |
赵学武1,2, 冀俊忠1, 姚垚1 |
1. 北京工业大学 信息学部 多媒体与智能软件技术北京市重点实验室, 北京 100124;
2. 南阳师范学院 软件学院, 河南 南阳 473061 |
|
Insula functional parcellation by searching Gaussian mixture model (GMM) using immune clonal selection (ICS) algorithm |
ZHAO Xue-wu1,2, JI Jun-zhong1, YAO Yao1 |
1. Beijing Municipal Key Laboratory of Multimedia and Intelligent Software Technology, Faculty of Information Technology, Beijing University of Technology, Beijing 100124, China;
2. College of Software, Nanyang Normal University, Nanyang 473061, China |
[1] HONNORAT N, EAVANI H, SATTERTHWAITE T D, et al. GraSP:geodesic graph-based segmentation with shape priors for the functional parcellation of the cortex[J]. Neuroimage, 2015, 106(2):207-221.
[2] MEZER A, YOVEL Y, PASTERNAK O, et al. Cluster analysis of resting-state fMRI time series[J]. Neuroimage, 2009, 45(4):1117-1125.
[3] 赵学武, 冀俊忠, 梁佩鹏. 面向fMRI数据的人脑功能划分[J]. 科学通报, 2016, 61(18):2035-2052. ZHAO Xue-wu, JI Jun-zhong, LIANG Pei-peng. The human brain functional parcellation based on fMRI data[J]. Chinese Science Bulletin, 2016, 61(18):2035-2052.
[4] VERCELLI U, DIANO M, COSTA T, et al. Node detection using high-dimension-al fuzzy parcellation applied to the insula cortex[J]. Neural Plasticity, 2016, 2016(5-6):1-8.
[5] KURTH F, ZILLES K, FOX P T, et al. A linkbetween the systems:functional differentiation andintegration within the human insula revealed by meta-analysis[J]. Brain Structure and Function, 2010,214(5-6):519-534.
[6] CHANG L J, YARKONI T, KHAW M W, et al. Decoding the role of the insula in human cogntion:functional parcellation and large-scale reverse inference[J]. Cerebral Cortex, 2013, 23(3):739-749.
[7] BEN D, PITSKEL N B, PELPHREY K A. Three systems of insula functional connectivity identified with cluster analysis[J]. Cerebral Cortex, 2011, 21(7):1498-1506.
[8] CAUDA F, COSTA T, TORTA D M, et al. Meta-analytic clustering of the insula cortex:characterizing the meta-analytic connectivity of the insula when involved in active tasks[J]. Neuroimage, 2012, 62(1):343-355.
[9] NORMI J S, FARRANT K, DAMARAJU E, et al. Dynamic functional network connectivity reveals unique and overlapping profiles of insula subdivisions[J]. Human Brain Mapping, 2016, 37(5):1770-1787.
[10] SHEN X, PAPADEMETRIS X, CONSTABLE R T. Graph-theory based parcellation of functional subunits in the brain from resting-state fMRI data[J]. Neuroimage, 2010, 50(3):1027-1035.
[11] JANSSEN R J, JYLÄNKI P, KESSELS R P C, et al. Probabilistic model-based functional parcellation reveals a robust, fine-grained subdivision of the striatum[J]. Neuroimage, 2015, 119(10):398-405.
[12] GOLLAND P, GOLLAND Y, MALACH R. Detection of spatial activation patterns as unsupervised segmentation of fMRI data[C]//International Confer ence on Medical Image Computing and Computer-as-sisted Intervention. MICCAI. Brisbane:Springer, 2006:110-118.
[13] 林琳, 王树勋. 基于自适应小生境混合遗传算法的说话人识别[J]. 电子学报, 2007, 35(1):8-12. LIN Lin, WANG Shu-xun. Speaker recognition based on adaptive niche hybrid genetic algorithms[J]. Chinese Journal of Electronics, 2007, 35(1):8-12.
[14] BEHESHTI Z, SHAMSUDDIN S M. A review of population-based metaheuristic algorithm[J]. International Journal of Advances in Soft Computing and Its Applications, 2013, 5(1):1-35.
[15] HAKTANIRTAR ULUTAS B, KULTUREL-KONAK S. A review of clonal selection algorithm and its applications[J]. Artificial Intelligence Review, 2011, 36(2):117-138.
[16] KOTANODA K, MATSUDA Y, SUGISHITA M. A spatio-temporal regression model for the analysis of functional MRI data[J]. Neuroimage, 2002, 17(3):1415-1428.
[17] OIKONOMOU V P, BLEKAS K. An adaptive regression mixture model for fMRI cluster analysis[J]. IEEE Transactions on Medical Imaging, 2013, 32(4):649-659.
[18] ARI Ç, AKSOY S, ARIKAN O. Maximum likelihood estimation of Gaussian mixture models using stochastic search[J]. Pattern Recognition, 2012, 45(7):2804-2816.
[19] BURNET F M. The clonal selection theory of acquired immunity[M]. London:Cambridge University Press, 1959.
[20] DE CASTRO L N, VON ZUBEN F J. An immun-ological approach to initialize centers of radial basis function neural networks[C]//In Proceeding of Brazilian Conference on Neural Networks. CBRN, Rio de Janeiro:[s.n.], 2001:79-84.
[21] PENG Y, LU B L. Hybrid learning clonal selectionalgorithm[J]. Information Sciences, 2015, 296(1):128-146.
[22] MEJIA A F, NEBEL M B, SHOU H, et al. Improving reliability of subject-level resting-state fMRI parcellation with shrinkage estimators[J]. Neuroimage, 2015, 112(5):14-29.
[23] 朱峰, 罗立民, 宋余庆,等. 基于自适应空间邻域信息GMM的图像分割[J]. 计算机研究与发展, 2011,48(11):2000-2007. ZHU Feng, LUO Li-min, SONG Yu-qing, et al.Adaptive spatially neighborhood information gaussian mixture model image segmentation[J]. Journal of computer Research and Development, 2011, 48(11):2000-2007.
[24] ZHANG Y, CASPERS S, FAN L, et al. Robust brain parcellation using sparse representation on resting-state fMRI[J]. Brain Structure and Function, 2014,220(6):1-15.
[25] HE Y. The HE LAB[EB/OL]. http://www.yonghelab.org/downloads/data.
[26] YAN C G. Data processing assistant for resting-state fMRI[EB/OL]. http://rfmri.org/DPARSF.
[27] FAN Y, NICKERSON L, LI H, et al. Functional connectivity-based parcellation of the thalamus:an unsupervised clustering method and its validity investigation[J]. Brain Connectivity, 2015, 5(10):620-630.
[28] KAHNT T, CHANG L J, PARK S Q, et al. Connectivity-based parcellation of the human orbitofrontal cortex[J]. Journal of the Society for Neuroscience, 2012, 32(18):6240-6250.
[29] MEIL M. Comparing clusterings:an information based distance[J]. Journal of Multivariate Analysis, 2007, 98(5):873-895. |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|