浙江大学学报(工学版)  2017, Vol. 51 Issue (7): 1331-1338    DOI: 10.3785/j.issn.1008-973X.2017.07.009
 土木工程

1. 浙江大学 建筑工程学院, 浙江 杭州 310058;
2. 浙江警察学院 交通管理工程系, 浙江 杭州 310053;
3. 吉林大学 交通学院, 吉林 长春 130022
Speed distribution model for heterogeneous bicycle traffic flow
XU Cheng1,2, QU Zhao-wei3, WANG Dian-hai1, JIN Sheng1
1. College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058, China;
2. Department of Traffic Management Engineering, Zhejiang Police College, Hangzhou 310053, China;
3. College of Transportation, Jilin University, Changchun 130022, China
 全文: PDF(1943 KB)   HTML

Abstract:

The basic statistical properties of speeds for heterogeneous bicycle traffic flow were analyzed based on the field survey data considering the situation that electric bicycles and regular bicycles ride on the bicycle lane together. A Gaussian mixture model (GMM) for bicycle speed distribution was constructed, and the expectation maximization (EM) algorithm was used for the maximum likelihood estimation of model's parameters through the analysis of various impact factors. The optimal number of components for GMM was determined by using Kolmogorov-Smirnov (K-S) goodness of fit test. Then the effect of different speed limits on bicycles' over-speed percentages was analyzed. Results show that the GMM can fit the field heterogeneous bicycle speed samples well. Three-component model can be used for fitting speed samples under free flow conditions, but five- or six-component model (GMM) should be used under both congested and uncongested conditions.

 CLC: U491

 服务 把本文推荐给朋友 加入引用管理器 E-mail Alert 作者相关文章

#### 引用本文:

XU Cheng, QU Zhao-wei, WANG Dian-hai, JIN Sheng. Speed distribution model for heterogeneous bicycle traffic flow. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2017, 51(7): 1331-1338.

#### 链接本文:

 [1] 新华网.电动自行车数量破2亿,"新国标"将出台[EB/OL].2013-10-20. http://news.xinhuanet.com/fortune/2013-10/20/c_125566241.htm. [2] JIN S, QU X, ZHOU D, et al. Estimating cycleway capacity and bicycle equivalent unit for electric bicycles [J]. Transportation Research Part A, 2015, 77: 22-248. [3] QU X, YANG Y, LIU Z, et al. Potential crash risks of expressway on-ramps and off-ramps: a case study in Beijing, China [J]. Safety Science, 2014, 70: 58-62. [4] XU C, YANG Y, JIN S, et al. Potential risk and its influencing factors for separated bicycle paths [J]. Accident Analysis and Prevention, 2016, 87: 59-67. [5] 周旦,马晓龙,金盛,等.混合非机动车交通流超车次率影响因素模型[J].浙江大学学报：工学版,2015,49(9): 1672-1678. ZHOU Dan, MA Xiao-long, JIN Sheng, et al. Modeling influencing factors of vehicle passing rate in mixed bicycle traffic flow [J]. Journal of Zhejiang University: Engineering Science, 2015, 49(9): 1672-1678. [6] ALLEN D P, ROUPHALL N, HUMMER J E, et al. Operational analysis of uninterrupted bicycle facilities [J]. Transportation Research Record, 1998, 1636: 29-36. [7] DEY P P, CHANDRA S, GANGOPADHAYA S. Speed distribution curves under mixed traffic conditions [J]. Journal of Transportation Engineering, 2006, 132(6): 475-481. [8] CHERRY C R. Electric two-wheelers in China: analysis of environmental, safety, and mobility impacts [R]. Berkeley: University of California, 2007: 101. [9] LIN S, HE M, TAN Y, et al. Comparison study on operating speeds of electric bicycles and bicycles: experience from field investigation in Kunming, China [J]. Transportation Research Record, 2008, 2048: 52-59. [10] LI Z, WANG W, LIU P, et al. Modeling bicycle passing maneuvers on multilane separated bicycle paths [J]. Journal of Transportation Engineering, 2013,139(1): 57-64. [11] DU W, YANG J, POWIS B, et al. Understanding on-road practices of electric bike riders: an observational study in a developed city of China [J]. Accident Analysis and Prevention, 2013, 59: 319-326. [12] DOZZA M, WERNEKE J. Introducing naturalistic cycling data: what factors influence bicyclists' safety in the real world? [J]. Transportation Research Part F, 2014, 24: 83-91. [13] SCHEPERS J P, FISHMAN E, DEN HERTOG, et al. The safety of electrically assisted bicycles compared to classic bicycles [J]. Accident Analysis and Prevention, 2014, 73: 174-180. [14] JIN S, QU X, WANG D. Assessment of expressway traffic safety using Gaussian mixture model based on time to collision [J]. International Journal of Computational Intelligence Systems, 2011, 4(6): 1122-1130. [15] JIN S, WANG D, XU C, et al. Short-term traffic safety forecasting using Gaussian mixture model and Kalman filter [J]. Journal of Zhejiang University: Science A, 2013, 14(4): 231-243. [16] PARK B J, ZHANG Y, LORD D. Bayesian mixture modeling approach to account for heterogeneityin speed data [J]. Transportation Research Part B, 2010,44(5): 662-673.
 [1] 张帅超, 朱谊, 陈喜群. 基于移动检测数据的宏观基本图特征[J]. 浙江大学学报(工学版), 2018, 52(7): 1338-1344. [2] 李文婧, 孙锋, 李茜瑶, 马东方. 采用递归有序聚类的信号控制时段划分方法[J]. 浙江大学学报(工学版), 2018, 52(6): 1150-1156. [3] 阮树斌, 王福建, 马东方, 金盛, 王殿海. 基于车牌识别数据的机动车出行轨迹提取算法[J]. 浙江大学学报(工学版), 2018, 52(5): 836-844. [4] 梅振宇, 章伟. 基于复杂性测度的泊位占有率序列动力学分析[J]. 浙江大学学报(工学版), 2018, 52(4): 727-734. [5] 龚越, 罗小芹, 王殿海, 杨少辉. 基于梯度提升回归树的城市道路行程时间预测[J]. 浙江大学学报(工学版), 2018, 52(3): 453-460. [6] 曲昭伟, 罗瑞琪, 陈永恒, 曹宁博, 邓晓磊, 汪昆维. 信号交叉口右转机动车轨迹特性[J]. 浙江大学学报(工学版), 2018, 52(2): 341-351. [7] 曹宁博, 陈永恒, 曲昭伟, 赵利英, 白乔文, 杨秋杰. 基于社会力模型的行人路径选择模型[J]. 浙江大学学报(工学版), 2018, 52(2): 352-357. [8] 杨庆芳, 赵小辉, 郑黎黎, 张伟. 基于模型预测控制的环形交叉口信号配时方法[J]. 浙江大学学报(工学版), 2018, 52(1): 117-124. [9] 杨方宜, 李铁柱. 大型综合客运枢纽送站坪交通特性及通行能力[J]. 浙江大学学报(工学版), 2017, 51(11): 2207-2214. [10] 吴江玲, 张生瑞, Amit Kumar Singh, 秦思, 孙振东. 高速公路强制换道持续时间半参数生存分析[J]. 浙江大学学报(工学版), 2017, 51(11): 2215-2221. [11] 于德新, 田秀娟, 杨兆升, 周熙阳, 程泽阳. 改进的干线协调信号控制优化模型[J]. 浙江大学学报(工学版), 2017, 51(10): 2019-2029. [12] 季学斌, 王慧, 宋春跃. 基于元胞自动机的施工场内交通流建模及安全分析[J]. 浙江大学学报(工学版), 2017, 51(10): 2005-2011. [13] 李显生, 孟凡淞, 郑雪莲, 任园园, 严佳晖. 交通冲突类型对驾驶人生理特性的影响[J]. 浙江大学学报(工学版), 2017, 51(9): 1720-1726. [14] 王薇, 程泽阳, 刘梦依, 杨兆升. 基于时空相关性的交通流故障数据修复方法[J]. 浙江大学学报(工学版), 2017, 51(9): 1727-1734. [15] 商强, 林赐云, 杨兆升, 邴其春, 邢茹茹. 基于变量选择和核极限学习机的交通事件检测[J]. 浙江大学学报(工学版), 2017, 51(7): 1339-1346.