Please wait a minute...
浙江大学学报(工学版)
土木与交通工程     
疲劳裂纹的跨尺度分析
李明, 刘扬, 唐雪松
长沙理工大学 土木与建筑学院,湖南 长沙 410114
Trans-scale analysis for fatigue crack
LI Ming, LIU Yang, TANG Xue-song
School of Civil Engineering and Architecture, Changsha University of Science and Technology, Changsha 410114, China
 全文: PDF(1944 KB)   HTML
摘要:

为了准确模拟正交异性钢桥面板疲劳裂纹扩展行为,提出基于约束应力区的三维表面半椭圆跨尺度裂纹模型.采用有限元法求解应力强度因子,将跨尺度应力强度因子作为疲劳裂纹从微观到宏观扩展的控制参量,使用统一模型描述正交异性钢桥面板疲劳破坏全过程.对正交异性钢桥面板的疲劳失效行为进行数值模拟,并与试验应力-寿命曲线进行对比分析.结果表明:疲劳裂纹扩展跨尺度模型能正确反映正交异性钢桥面板纵肋与桥面板焊接部位的疲劳破坏过程,并可模拟疲劳裂纹扩展从微观到宏观的跨尺度行为.由于微观效应对疲劳寿命有显著影响,当考虑到材料的微观效应时,该模型可解释疲劳寿命试验数据的离散现象.

Abstract:
A trans-scale model of 3D semi-ellipse surface crack based on the restraining stress zone was developed for accurately simulate the fatigue crack propagation behavior of orthotropic steel bridge deck. The finite element method was applied to calculate the stress intensity factor. The trans-scale stress intensity factor was used as controlling parameter for the fatigue crack growth from micro-scale to macro-scale. Therefore, the whole fatigue failure process could be described by a unified model. Numerical simulation was performed for the fatigue failure behavior of an orthotropic steel bridge deck. Comparison and analysis were made between the theoretical results and experimental S-N curves. Results indicate that the trans-scale fatigue crack growth model can correctly describe the fatigue failure process of the welded joint between bridge deck and U-rib of orthotropic steel bridge decks. As is known that the microscopic effects have great influence on the fatigue life; when the microscopic effects are taken into account, the scatter of the fatigue test data can be explained by the proposed multi-scale model.
出版日期: 2017-03-01
CLC:  U 441  
基金资助:

国家“973”重点基础研究发展规划资助项目(2015CB057701, 2015CB057704, 2015CB057705);国家自然科学基金资助项目(51378081);长沙理工大学土木工程湖南省优势特色重点学科创新性研究资助项目(16ZDXK04)

通讯作者: 刘扬(1973—),男,教授,博导.ORCID:0000-0001-8683-9015.     E-mail: liuyangbridge@163.com
作者简介: 李明(1981—),男,博士生,从事桥梁结构可靠度评估与安全控制研究. ORCID:0000-0003-0335-2725. E-mail: 20519271@qq.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  

引用本文:

李明, 刘扬, 唐雪松. 疲劳裂纹的跨尺度分析[J]. 浙江大学学报(工学版), 10.3785/j.issn.1008-973X.2017.03.013.

LI Ming, LIU Yang, TANG Xue-song. Trans-scale analysis for fatigue crack. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 10.3785/j.issn.1008-973X.2017.03.013.

[1] 刘扬,李明,鲁乃唯,等.随机车流作用下悬索桥钢箱梁细节疲劳可靠度[J].长安大学学报:自然科学版,2016, 36(2): 44-51.
LIU Yang, LI Ming, LU Nai-wei, et al. Fatigue reliability for steel box girder details of suspension bridge under random traffic flow [J]. Journal of Chang’an University: Natural Science Edition, 2016, 36(2): 44-51.
[2] 张清华,崔闯,卜一之,等.港珠澳大桥正交异性钢桥面板疲劳特性研究[J].土木工程学报, 2014, 47(9): 110-119.
ZHANG Qing-hua, CUI Chuang, BU Yi-zhi, et al. Study on fatigue features of orthotropic decks in steel box girder of Hong Kong-Zhuhai-Macao Bridge [J]. China Civil Engineering Journal, 2014, 47(9): 110-119.
[3] 张高楠,石广玉,王晓丹.正交异性钢桥面板焊缝的疲劳寿命评估方法.[J].固体力学学报, 2013, 33: 216-223.
ZHANG Gao-nan, SHI Guang-yu, WANG Xiao-dan. Evaluation the approaches for fatigue life prediction of welded joints of orthotropic steel decks [J]. Chinese Journal of Solid Mechanics, 2013, 33: 216-223.
[4] MINER M A. Cumulative damage in fatigue [J]. Journal of Applied Mechanics, 1945, 12(3): A159-A164.
[5] PARIS P C. The growth of cracks due to variations in load [D]. Bethlehem: University of Lehigh, 1962.
[6] 邓扬,丁幼亮,李爱群,等.钢箱梁焊接细节基于长期监测数据的疲劳可靠性评估:疲劳可靠度指标[J].土木工程学报,2012, 45(3): 86-92.
DENG Yang, DING You-liang, LI Ai-qun, et al. Fatigue reliability assessment for welded of steel box girders using long-term monitoring data: fatigue reliability indices [J]. China Civil Engineering Journal, 2012,45(3): 86-92.
[7] 顾萍,周聪.铁路正交异性钢桥面板典型疲劳裂纹寿命估算[J].铁道学报, 2012, 34(1): 97-102.
GU Ping, ZHOU Cong. Estimation of fatigue life of typical cracks of orthotropic steel decks of railways bridges [J]. Journal of the China Railway Society, 2012, 34(1): 97-102.
[8] 郑淳.基于断裂力学的公路钢桥疲劳寿命可靠度方法研究[D].广州:华南理工大学, 2013.
ZHEN Chun. Research on fatigue reliability evaluation of highway steel bridges based on fracture mechanics [D]. Guangzhou: South China University of Technology, 2013.
[9] SIH G C. Multiscale fatigue crack initiation and propagation of engineering materials: structural integrity and microstructural worthiness [M]. New York: Springer,2008.
[10] SIH G C, TANG X S. Dual scaling damage model associated with weak singularity for macroscopic crack possessing a micro-/meso-scopic notch tip [J]. Theoretical and Applied Fracture Mechanics, 2004, 42(1): 1-24.
[11] TANG X S, SIH G C. Weak and strong singularitiesreflecting multiscale damage: micro-boundary conditions for free-free, fixed-fixed and free-fixed constraints [J]. Theoretical and Applied Fracture Mechanics, 2005, 43(1): 5-62.
[12] SIH G C, TANG X S. Simultaneous occurrence of double micro/macro stress singularities for multiscale crack model [J]. Theoretical and Applied Fracture Mechanics, 2006, 46(2): 87-104.
[13] SIH G C, TANG X S. Asymptotic micro-stress field dependency on mixed boundary conditions dictated by micro-structural asymmetry: Mode I macro-stress loading [J]. Theoretical and Applied Fracture Mechanics, 2006, 46(1): 1-14.
[14] TANG X S, SIH G C. Equilibrium mechanics model of multiscaling by segmentation: asymptotic solution for macro-meso-micro damage in anti-plane shear deformation [J]. Theoretical and Applied Fracture Mechanics, 2005, 44(1): 1-15.
[15] SIH G C, TANG X S. Triple scale segmentation of non-equilibrium system simulated by macro-micro-atomic line model with mesoscopic transitions [J]. Theoretical and Applied Fracture Mechanics, 2005, 44(2): 116-145.
[16] TANG X S. Scatter of fatigue data owing to material microscopic effects [J]. Sci China Phys Mech Astron, 2014, 57(1): 90-97.
[17] 李庆芬,胡胜海,朱世范.断裂力学及其工程应用[M].哈尔滨:哈尔滨工程大学出版社, 2008, 34-36.
[18] YA S, YAMADA K, ISHIKAWA T. Fatigue evaluation of Rib-to-Deck welded joints of orthotropic steel bridge deck [J]. Journal of Bridge Engineering, 2011, 16(4): 492-499.
[19] 荣振环,张玉玲,刘晓光,等.大跨度斜拉桥正交异性板疲劳试验研究[J].钢结构, 2009, 24(5): 13-16.
RONG Zhen-huan, ZHANG Yu-ling, LIU Xiao-guang, et al. Fatigue experimental research on orthotropic plate of long-span cable-stayed bridge [J]. Steel construction, 2009, 24(5): 13-16.
[20] SIM H B, UANG C M, SIKORSKY C. Effects of fabrication procedures on fatigue resistance of welded joints in steel orthotropic decks [J]. Journal of Bridge Engineering, 2009, 14(5): 366-373.
[1] 王力,刘世忠,路韡,牛思胜,施鑫磊. 新型波形钢腹板组合箱梁温度效应[J]. 浙江大学学报(工学版), 2021, 55(4): 675-683.
[2] 廖小伟,王元清,吴剑国,石永久. 低温环境下十字形非传力角焊缝接头的疲劳性能[J]. 浙江大学学报(工学版), 2020, 54(10): 2018-2026.
[3] 庄心善,赵汉文,王俊翔,黄勇杰. 合肥膨胀土动弹性模量与阻尼比试验研究[J]. 浙江大学学报(工学版), 2020, 54(4): 759-766.
[4] 龙江兴,金伟良,张军,毛江鸿,崔磊. 电化学修复后钢筋疲劳性能试验研究[J]. 浙江大学学报(工学版), 2020, 54(1): 64-72.
[5] 廖小伟, 王元清, 宗亮, 施刚. 基于有效缺口应力法的钢桥焊接细节疲劳分析[J]. 浙江大学学报(工学版), 2017, 51(1): 1-8.
[6] 肖新辉,鲁乃唯, 刘扬. 随机车流下公路钢桥疲劳可靠度分析[J]. 浙江大学学报(工学版), 2016, 50(9): 1777-1783.
[7] 孙珂, 张延庆. 基于位移影响线曲率的小半径弯桥损伤识别[J]. 浙江大学学报(工学版), 2016, 50(4): 727-734.
[8] 蒋正文, 万水, 李明鸿, 马磊. 结构可靠度分析中的混合模拟法及应用[J]. 浙江大学学报(工学版), 2015, 49(4): 782-791.
[9] 狄生奎, 文铖, 叶肖伟. 正交异性钢桥面板结构热点应力有限元分析[J]. 浙江大学学报(工学版), 2015, 49(2): 225-231.
[10] 丁勇, 谢旭, 苟昌焕, 黄剑源. 钢桥交通振动计算方法与动力特性研究[J]. J4, 2012, 46(6): 1107-1114.
[11] 郭增伟,葛耀君,卢安平. 竖弯涡振控制的调谐质量阻尼器TMD参数优化设计[J]. J4, 2012, 46(1): 8-13.
[12] 俞亚南, 张巍, 申永刚. 大体积承台混凝土早期表面开裂控制措施[J]. J4, 2010, 44(8): 1621-1628.