Please wait a minute...
浙江大学学报(工学版)
机械工程     
仿生机器魟鱼研制与游动性能实验研究
王扬威, 闫勇程, 刘凯, 赵东标
南京航空航天大学 机电学院,江苏 南京 210016
Development and swimming experimental research on bionic stingray robot
WANG Yang wei, YAN Yong cheng, LIU Kai, ZHAO Dong biao
College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
 全文: PDF(7932 KB)   HTML
摘要:

为了开发一种游动稳定性和机动性高的水下机器人,从鳐科模式游动的魟鱼胸鳍波动推进中得到灵感,在分析肌肉和骨骼结构的基础上,设计带有环形长鳍的仿生机器魟鱼,研究机动游动的控制策略.研制仿生机器魟鱼样机.基于游动图像序列处理方法,通过实验研究波动频率和幅值对游动性能的影响.结果表明,仿生样机能够实现与魟鱼相似的游动运动,游动稳定性好、机动性高,直线游动速度和原地转弯速度随波动频率和波动幅值的增大而增大,最大直线游动速度为109 mm/s,最大原地转弯速度为93°/s.

Abstract:

A bionic stingray robot with an annular long-fin was designed based on an inspiration from the undulating propulsion of stingray, a fish of rajiform, which moves forward with its pectoral fin undulating. An analysis on the stingray’s muscle and skeleton structure was conducted. A control strategy was formulated for maneuvering swimming, and a prototype of bionic stingray robot was developed. Then an experimental research of the influence of undulating frequency and amplitude was conducted on its swimming performance based on swimming image sequence processing method. Results show that the bionic robot prototype can swim in a way similar to stingray with a high swimming stability and maneuverability. The straight-line swimming velocity and standing turning velocity can increase with undulating frequency and amplitude. The maximum straight-line swimming velocity can reach 109 mm/s, and the maximum standing turning velocity can reach 93°/s.

出版日期: 2017-01-01
CLC:  TH 113  
基金资助:

江苏省自然科学基金资助项目(BK20130796);国家自然科学基金资助项目(51405229);中央高校基本科研业务费专项资金资助研究生创新基地(实验室)开放基金资助项目(kfjj20150517).

作者简介: 王扬威(1980—),男,讲师,从事仿生机器人、机电一体化技术及智能装备的研究. ORCID: 0000-0003-2947-7024. E-mail: wywkly@126.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  

引用本文:

王扬威, 闫勇程, 刘凯, 赵东标. 仿生机器魟鱼研制与游动性能实验研究[J]. 浙江大学学报(工学版), 10.3785/j.issn.1008-973X.2017.01.013.

WANG Yang wei, YAN Yong cheng, LIU Kai, ZHAO Dong biao. Development and swimming experimental research on bionic stingray robot. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 10.3785/j.issn.1008-973X.2017.01.013.

[1] TRIANTAFYLLOU M S,TRIANTAFYLLOU G S. An efficient swimming machine[J]. Scientific American, 1995, 272(3): 64-70.
[2] BANDYOPADHYAY P R. Trends in biorobotic autonomous undersea vehicles [J]. IEEE Journal of Oceanic Engineering, 2005, 30(1): 109-139.
[3] WEBB P W. Form and function in fish swimming [J]. Scientific American, 1984, 251(1): 72-83.
[4] SFAKIOTAKIS M, LANE D M, DAVIES J B C.Review of fish swimming modes for aquatic locomotion[J]. IEEE Journal of Oceanic Engineering, 1999, 24(2): 237-252.
[5] BARRETT SCOTT D. The design of a flexible hull undersea vehicle propelled by an oscillating foil [D].Massachusetts: Massachusetts Institute of Technology,1994.
[6] HIROYOSHI S, NAOMI K, KOICHI S. Load characteristics of mechanical pectoral fin [J]. Experiments in Fluids, 2008, 44(5): 759-771.
[7] CAO Y, BI S, CAI Y, et al. Applying central pattern generators to control the robofish with oscillating pectoral fins [J]. Industrial Robot, 2015, 42(5): 392-405.
[8] MA H, CAI Y, WANG Y, et al. A biomimetic cownose ray robot fish with oscillating and chordwise twisting flexible pectoral fins [J]. Industrial Robot, 2015, 42(3): 214-221.
[9] RUSSO R S, BLEMKER S S, FISH F E, et al. Biomechanical model of batoid (skates and rays) pectoral fins predicts the influence of skeletal structure on fin kinematics: implications for bioinspired design [J]. Bioinspiration and Biomimetics, 2015, 10(4): 215.
[10] YANG S B, QIU J, HAN X Y. Kinematics modeling and experiments of pectoral oscillation propulsion robotic fish [J]. Journal of Bionic Engineering, 2009,6(2): 174-179.
[11] BIOLEAU R, FAN L, MOORE T. Mechanization of rajiform swimming motion: the making of Roboray [R]. Vancouver: Engineering Physics Project Laboratory, University of British Columbia, 2002.
[12] 胡天江.仿生长鳍波动适应性理论与控制方法研究[D].长沙:国防科学技术大学, 2008.
HU Tianjiang. Undulation adaptability theory and control for the biomimetic undulating fins [D]. Changsha: National University of Defense Technology,2008.
[13] ALVARADO P V, CHIN S, LARSON W, et al. A soft body underactuated approach to multi degree of freedom biomimetic robots: a stingray example [C]∥ Proceedings of the 2010 3rd IEEE RAS and EMBS International Conference on Biomedical Robotics and Biomechatronics. Tokyo: IEEE, 2010: 473-478.
[14] RAHMAN M M, SUGIMORI S, MIKI H, et al. Braking performance of a biomimetic squidlike underwater robot [J]. Journal of Bionic Engineering, 2013,10(3): 265-273.
[15] 高飞,王玉魁,王振龙,等.形状记忆合金丝驱动的仿生墨鱼水下机器人的原型设计[J].机器人, 2013,35(3): 346-351.
GAO Fei, WANG Yukui, WANG Zhenlong, et al. Prototype design of a kind of biomimetic cuttlefish underwater robot actuated by SMA wires [J]. Robot, 2013, 35(3): 346-351.
[16] WEI Q P, WANG S, DONG X, et al. Design and kinetic analysis of a biomimetic underwater vehicle with two undulating longfns [J]. Acta Automatica Sinica, 2013, 39(8): 1330-1338.
[17] 章永华,何建慧.仿生蓝点魟的结构设计及建模[J].机械科学与技术,2012, 31(4): 627-632.
ZHANG Yonghua, HE Jianhui.Mechanism design and modeling of a biomimetic bluespotted ray [J]. Mechanical Science and Techology for Aerospace Engineering, 2012, 31(4): 627-632.
[18] 王扬威.仿生墨鱼机器人及其关键技术研究[D].哈尔滨: 哈尔滨工业大学, 2011.
WANG Yangwei. Biomimetic cuttlefish robot and its key technology research [D]. Harbin: Harbin Institute of Technology, 2011.
[19] 杭观荣,王振龙,王扬威,等.肌肉性静水骨骼原理的仿乌贼鳍推进器[J].哈尔滨工业大学学报,2009,41(11): 59-64.
HANG Guanrong, WANG Zhenlong, WANG Yangwei, et al. Squid finlike propeller based on the principle of muscular hydrostat [J]. Journal of Harbin Institute of Technology, 2009, 41(11): 59-64.
[20] 谢海斌.基于多波动鳍推进的仿生水下机器人设计、建模与控制[D].长沙:国防科学技术大学, 2006.
XIE Haibin. Design, modeling, and control of bionic underwater vehicle propelled by multiple underlatory fins [D]. Changsha: National University of Defense Technology, 2006.
[21] ROSENBERGER L J, WESTNEAT M W. Functional morphology of undulatory pectoral fin locomotion in the stingray taeniura lymma (chondrichthyes: Dasyatidae) [J]. The Journal of Experimental Biology, 1999, 202: 3523-3539.
[22] 王扬威,赵东标,刘凯,等.仿生机器魟鱼及其运动方式:201110428002.7[P]. 20120627.

[1] 李伟达,李娟,李想,张虹淼,顾洪,史逸鹏,张浩杰,孙立宁. 欠驱动异构式下肢康复机器人动力学分析及参数优化[J]. 浙江大学学报(工学版), 2021, 55(2): 222-228.
[2] 李研彪,徐涛涛,郑航,王泽胜. 含球面副间隙的空间并联机构动态特性[J]. 浙江大学学报(工学版), 2020, 54(2): 348-356.
[3] 谭芳芳,朱俊江,严天宏,高志强,何岭松. 基于GA-WPT-ELM的6061铝合金表面粗糙度预测[J]. 浙江大学学报(工学版), 2020, 54(1): 40-47.
[4] 周瑾,高天宇,陈怡,席鸿皓. 采用动力测试的双转子卧螺离心机模型修正[J]. 浙江大学学报(工学版), 2019, 53(2): 241-249.
[5] 黄伟迪,甘春标,杨世锡. 一类高速电主轴的动力学建模及振动响应分析[J]. 浙江大学学报(工学版), 2016, 50(11): 2195-2206.
[6] 黄伟,王家序,徐涛,肖科,李俊阳,吴会超. 金属橡胶复合齿轮副振动特性分析及实验[J]. 浙江大学学报(工学版), 2016, 50(11): 2231-2238.
[7] 程卫东,赵德尊 . 用于滚动轴承转频估计的EMD软阈值降噪算法[J]. 浙江大学学报(工学版), 2016, 50(3): 428-436.
[8] 田红亮,余媛,张屹. 机床支撑地脚结合部法向粗糙接触建模[J]. 浙江大学学报(工学版), 2015, 49(11): 2111-2118.
[9] 魏义敏, 杨世锡, 甘春标. 变截面阶梯杆中的纵波传播特性实验[J]. 浙江大学学报(工学版), 2015, 49(6): 1146-1153.
[10] 杨依领,娄军强,魏燕定,傅雷,田埂,赵晓伟. 综合模态控制力下压电致动器的优化布局[J]. 浙江大学学报(工学版), 2015, 49(5): 841-847.
[11] 杨丹, 甘春标, 杨世锡, 王跃华. 一类初弯曲转子的裂纹-碰摩故障响应分析[J]. 浙江大学学报(工学版), 2014, 48(8): 1496-1501.
[12] 李强, 刘淑莲, 于桂昌, 潘晓弘, 郑水英. 非线性转子-轴承耦合系统润滑及稳定性分析[J]. J4, 2012, 46(10): 1729-1736.
[13] 钟志贤, 祝长生. 横向裂纹多盘柔性转子系统的动力学特性[J]. J4, 2012, 46(10): 1839-1845.
[14] 王跃华,甘春标 ,杨世锡,雷华. 有界噪声激励下Hénon-Heiles系统响应的降噪分析[J]. J4, 2011, 45(11): 1895-1899.