Please wait a minute...
浙江大学学报(工学版)
机械工程     
综合模态控制力下压电致动器的优化布局
杨依领1,娄军强2,魏燕定1,傅雷1,田埂1,赵晓伟1
1. 浙江大学 现代制造工程研究所 浙江省先进制造技术重点研究实验室,浙江 杭州 310027; 2. 宁波大学 机械与力学学院,浙江 宁波 315211
Optimal placement of piezoelectric actuators using synthetic modal control force
YANG Yi-ling1, LOU Jun-qiang2, WEI Yan-ding1, FU Lei1, TIAN Geng1, ZHAO Xiao-wei1
1. Institute of Manufacturing Engineering, Key Laboratory of Advanced Manufacturing Technology of  Zhejiang Province, Zhejiang University, Hangzhou 310027, China;2. College of Mechanical Engineering and Mechanics, Ningbo University, Ningbo 315211, China
 全文: PDF(2056 KB)   HTML
摘要:

针对智能挠性结构中致动器的优化布局问题,在分析挠性结构动力学方程和状态空间方程的基础上,采用模态理论,对系统控制矩阵进行奇异值分解,提出一种表征最大综合模态控制力的评价准则,该评价准则兼顾保留模态和截断模态对模态控制力的影响,综合考虑模态权重.最后以粘贴有压电致动器/应变传感器的挠性梁为例,通过理论计算和改进的遗传算法进行优化分析,得到综合模态控制力最大时压电致动器的布局位置,并建立实验测控系统进行验证.实验结果表明:采用优化结果中的致动器布局时,系统具有较好的综合模态控制力,控制效果也更优,所提出的评价准则和优化方法是可行的.

Abstract:

This paper dealt with the optimal placement of actuators in smart flexible structures. Based on the analysis of  dynamic equations and state space equations of flexible structures,  the modal theory was adopted and the singular value decomposition of control matrices was employed. Then, a criterion of the maximum synthetic modal control force  was proposed. The criterion involved the effect of reserved  and residual modes to the modal control force. Meanwhile, modal weights were considered. Finally,  a flexible beam with piezoelectric actuators/strain sensors was chosen as an example,  theoretical calculations and the improved genetic algorithm were used for the optimal analysis. Thus, the optimal positions of piezoelectric actuators with maximum synthetic modal control force were found, and an experimental system was set up to verify the proposed  method. The experimental results demonstrate that the  system has a good synthetic modal control force and control effect by using the optimal placement result of actuators. The proposed evaluation criterion and optimal method is feasible.

出版日期: 2015-12-26
:  TP 24  
基金资助:

国家自然科学基金资助项目(51375433);浙江省自然科学基金资助项目(LY13E050008)

通讯作者: 魏燕定,男,教授     E-mail: weiyd@zju.edu.cn
作者简介: 杨依领(1987-),男,博士生,从事振动主动控制、压电应用等方面研究. E-mail: meyangyl@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

杨依领,娄军强,魏燕定,傅雷,田埂,赵晓伟. 综合模态控制力下压电致动器的优化布局[J]. 浙江大学学报(工学版), 10.3785/j.issn.1008-973X.2015.05.005.

YANG Yi-ling, LOU Jun-qiang, WEI Yan-ding, FU Lei, TIAN Geng, ZHAO Xiao-wei. Optimal placement of piezoelectric actuators using synthetic modal control force. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 10.3785/j.issn.1008-973X.2015.05.005.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2015.05.005        http://www.zjujournals.com/eng/CN/Y2015/V49/I5/841

[1] RAMOS F, FELIU V, PAYO I. Design of trajectories with physical constraints for very lightweight single link flexible arms [J]. Journal of Vibration and Control, 2008, 14(8): 1091-1110.
[2] 朱灯林, 吕蕊, 俞洁. 压电智能悬臂梁的压电片位置、尺寸及控制融合优化设计[J]. 机械工程学报, 2009,45(2): 262-267.
ZHU Deng-lin, LV Rui, YU Jie. Integrated optimal design of the PZT position, size and control of smart cantilever beam [J].Chinese Journal of Mechanical Engineering, 2009, 45(2): 262-267.
[3] 魏燕定, 娄军强, 吕永桂, 等. 振动主动控制中性二次型最优控制问题研究[J]. 浙江大学学报:工学版,2009, 43(3): 420-424.
WEI Yan-ding, LOU Jun-qiang, LV Yong-gui, et al. Research on linear quadratic optimal control problem in active vibration control [J]. Journal of Zhejiang University: Engineering Science, 2009, 43(3): 420-424.
[4] HU Q L, MA G F. Vibration control of flexible spacecraft actuated by piezoceramics via variable structure strategy [J]. Journal of Harbin Institute of Technology, 2007, 14(5): 604-608.
[5] DUTTA R, GANGULI R, MANI V. Swarm intelligence algorithms for integrated optimization of piezoelectric actuator and sensor placement and feedback gains [J]. Smart Materials & Structures,2011, 20(10501810): 114.
[6] GURSES K, BUCKHAM B J, PARK E J. Vibration control of a single-link flexible manipulator using an array of fiber optic curvature sensors and PZT actuators [J]. Mechatronics, 2009, 19(2): 167-177.
[7] 钱锋, 王建国, 汪权, 等. 基于模态应变能分布的压电致动器/传感器位置优化遗传算法[J]. 振动与冲击, 2013,32(11): 161-166.
QIAN Feng, WANG Jian-guo, WANG Quan, et al. Optimal placement of piezoelectric actuator/sensor using genetic algorithm based on modal strain energy distribution[J]. Journal of Vibration and Shock, 2013, 32(11):161-166.
[8] LINDBERG R E, LONGMAN R W. On the number and placement of actuators for independent model space control [J]. Journal of Guidance, Control, and Dynamics, 1984, 7(2): 215-221.
[9] AMBROSIO P,RESTA F, RIPAMONTI F. An H2 norm approach for the actuator and sensor placement in vibration control of a smart structure [J]. Smart Materials and Structures, 2012, 21(12): 125016.
[10] 邱志成. 挠性板振动抑制的敏感器与驱动器优化配置[J]. 宇航学报, 2002,23(4): 30-36.
QIU Zhi-cheng. Optimal placement of sensors and actuators for flexible plate of vibration suppression[J]. Journal of Astronautics, 2002, 23(4): 30-36.
[11] BRUANT I, PROSLIER L. Optimal location of actuators and sensors in active vibration control [J]. Journal of Intelligent Material Systems and Structures, 2005, 16(3): 197-206.
[12] NESTOROVIC T, TRAJKOV M. Optimal actuator and sensor placement based on balanced reduced models [J]. Mechanical Systems and Signal Processing, 2013, 36(2): 271-289.
[13] SUN D, MILLS J K, SHAN J, et al. A PZT actuator control of a single-link flexible manipulator based on linear velocity feedback and actuator placement [J]. Mechatronics, 2004, 14(4): 381-401.
[14] WANG Q, WANG C M. A controllability index for optimal design of piezoelectric actuators in vibration control of beam structures [J]. Journal of Sound and Vibration, 2001, 242(3): 507-518.
[15] BIGLAR M, MIRDAMADI H R, DANESH M. Optimal locations and orientations of piezoelectric transducers on cylindrical shell based on gramians of contributed and undesired Rayleigh-Ritz modes using genetic algorithm [J]. Journal of Sound and Vibration, 2014, 333(5): 1224-1244.
[16] SRINIVAS M, PATNAIK L M. Adaptive probabilities of crossover and mutation in genetic algorithms [J]. Systems, Man and Cybernetics, 1994, 24(4): 656-667.

[1] 高德东, 李强, 雷勇, 徐飞, 白辉全. 基于几何逼近法的斜尖柔性穿刺针运动学研究[J]. 浙江大学学报(工学版), 2017, 51(4): 706-713.
[2] 张铭奎, 程文明, 刘放. 助力外骨骼负载特征与驱动特征耦合效应[J]. 浙江大学学报(工学版), 2017, 51(4): 807-816.
[3] 汤志东, 贠超. 全自动快换装置快速接头技术综述[J]. 浙江大学学报(工学版), 2017, 51(3): 461-470.
[4] 陈鹏, 项基, 韦巍. 基于GWLN方法的冗余机械臂关节力矩约束控制[J]. 浙江大学学报(工学版), 2017, 51(1): 68-74.
[5] 潜龙昊, 胡士强, 杨永胜. 多节双八面体变几何桁架臂逆运动学解析算法[J]. 浙江大学学报(工学版), 2017, 51(1): 75-81.
[6] 徐显金, 吴龙辉, 杨小俊, 汤亮, 杨永峰. 高压直流巡检机器人的磁力驱动方法[J]. 浙江大学学报(工学版), 2016, 50(10): 1937-1945.
[7] 张湧涛, 宋志伟, 王一, 粘山坡. 基于空间网格的机器人工作点位姿标定方法[J]. 浙江大学学报(工学版), 2016, 50(10): 1980-1986.
[8] 朱雨时,杨灿军,吴世军,徐晓乐,周璞哲,单鑫. 水柱测量中的水下滑翔机转向性能[J]. 浙江大学学报(工学版), 2016, 50(9): 1637-1645.
[9] 贾松敏,卢迎彬,王丽佳,李秀智,徐涛. 分层特征移动机器人行人跟踪[J]. 浙江大学学报(工学版), 2016, 50(9): 1677-1683.
[10] 刘亚男,倪鹤鹏,张承瑞,王云飞,孙好春. 基于PC的运动视觉一体化开放控制平台设计[J]. 浙江大学学报(工学版), 2016, 50(7): 1381-1386.
[11] 丁夏清,杜卓洋,陆逸卿,刘山. 基于混合势场的移动机器人视觉轨迹规划[J]. 浙江大学学报(工学版), 2016, 50(7): 1298-1306.
[12] 张阿龙, 章明, 乔明杰, 朱伟东, 梅标. 基于视觉测量的环形轨底座位姿标定方法[J]. 浙江大学学报(工学版), 2016, 50(6): 1080-1087.
[13] 江文婷, 龚小谨, 刘济林. 基于增量计算的大规模场景致密语义地图构建[J]. 浙江大学学报(工学版), 2016, 50(2): 385-391.
[14] 黄水华,江沛,韦巍,项基,彭勇刚. 基于四元数的机械手姿态定向控制[J]. 浙江大学学报(工学版), 2016, 50(1): 173-179.
[15] 黄奇伟, 章明, 曲巍崴, 卢贤刚, 柯映林. 机器人制孔姿态优化与光顺[J]. 浙江大学学报(工学版), 2015, 49(12): 2261-2268.