Please wait a minute...
浙江大学学报(工学版)
计算机技术﹑电信技术     
仿生六足机器人传感信息处理及全方向运动控制
陈伟海,刘涛,王建华,任冠佼,吴星明
北京航空航天大学 自动化科学与电气工程学院,北京 100191
Sensor signal processing and omnidirectional locomotion control of a bio-inspired hexapod robot
CHEN Wei-hai, LIU Tao, WANG Jian-hua, REN Guan-jiao, WU Xing-ming
School of Automation Science and Electrical Engineering, Beihang University, Beijing 100191, China
 全文: PDF(2192 KB)   HTML
摘要:

针对传统CPG控制方法无法很好地控制机器人足端轨迹的问题,提出基于中枢神经模式发生器(CPG)的控制方法.在CPG控制方法中加入用于足端轨迹控制的轨迹发生器模块,通过调节参数值可以实现机器人的全方向运动控制.为降低传统CPG控制中传感信息反馈以及参数调整的复杂程度,设计2种用于躲避前方和两侧障碍物的传感信号处理的神经网络.该模块实现多传感信号的融合,生成用以控制机器人运动行为的各个参数值,实现机器人的自主避障.设计一个仿生六足机器人样机,将其分别放置在墙角和狭窄空间中进行自主避障行走实验,结果证明了机器人全方向运动控制算法和自主避障算法的可行性.

Abstract:

Control method based on a central pattern generator (CPG) was proposed to deal with the issue of intelligent locomotion control of bio-inspired hexapod robots. The traditional CPG-based control was unable to control the foot trajectory of robots. For the proposed CPG control method, trajectory generators were added to the control scheme to control  foot trajectory. Thus,  omnidirectional walking control could be realized by simply adjusting the value of control parameters. Two artificial neural networks for sensor signal processing were developed to overcome complexity in sensory feedback and parameter tuning in CPG control. The neural networks accomplished the fusion of multi-sensory signals, generating the values of the control parameters for robot behavior control. In this way, the robot realized autonomous obstacle-avoiding. A hexapod robot prototype was designed to conduct two real robot experiments in different situations. The experimental results proved that  the effectiveness of proposed omnidirectional locomotion control algorithm and obstacle-avoiding algorithm.

出版日期: 2015-08-28
:  TP 242  
基金资助:

国家自然科学基金资助项目(61175108);北京市自然科学基金资助项目(4142033).

作者简介: 陈伟海(1955-),男,教授,博导,从事仿生机器人技术、机器人视觉技术及其应用研究.E-mail:whchenbuaa@126.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

陈伟海,刘涛,王建华,任冠佼,吴星明. 仿生六足机器人传感信息处理及全方向运动控制[J]. 浙江大学学报(工学版), 10.3785/j.issn.1008-973X.2015.03.006.

CHEN Wei-hai, LIU Tao, WANG Jian-hua, REN Guan-jiao, WU Xing-ming. Sensor signal processing and omnidirectional locomotion control of a bio-inspired hexapod robot. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 10.3785/j.issn.1008-973X.2015.03.006.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2015.03.006        http://www.zjujournals.com/eng/CN/Y2015/V49/I3/430

[1] 王田苗, 孟偲, 裴葆青, 等. 仿壁虎机器人研究综述[J]. 机器人, 2007, 29(3): 290-297.
WANG Tian-miao, MENG Cai, PEI Bao-qing, et al. Summary on gecko robot research [J]. Robot, 2007, 29(3): 290-297.
[2] RITZMANN R E, QUINN R D, FISCHER M S. Convergent evolution and locomotion through complex terrain by insects, vertebrates and robots[J]. Arthropod Structure and Development, 2004, 33(3): 361-379.
[3] DELCOMYN F, NELSON M E, COCATRE-ZILGIEN J H. Sense organs of insect legs and the selection of sensors for agile walking robots [J]. The International Journal of Robotics Research, 1996, 15(2): 113-127.
[4] GO Y, YIN X, BOWLING A. Navigability of multi-legged robots [J]. IEEE/ASME Transactions on Mechatronics, 2006, 11(1): 18.
[5] SCHILLING M, HOINVILLE T, SCHMITZ J, et al. Walknet, a bio-inspired controller for hexapod walking [J]. Biological Cybernetics, 2013, 107(4): 397-419.
[6] SCHILLING M, CRUSE H, ARENA P. Hexapod walking: an expansion to Walknet dealing with leg amputations and force oscillations [J]. Biological Cybernetics, 2007, 96(3): 323-340.
[7] IJSPEERT A J. Central pattern generators for locomotion control in animals and robots: a review [J]. Neural Networks, 2008, 21(4): 642-653.
[8] KIMURA H, FUKUOKA Y, COHEN A H. Adaptive dynamic walking of a quadruped robot on natural ground based on biological concepts [J]. The International Journal of Robotics Research, 2007, 26(5): 475-490.
[9] 吴启迪, 刘成菊, 张家奇, 等. 生物诱导的机器人行走控制研究进展[J]. 中国科学F辑:信息科学, 2009, 39(10): 1080-1094.
WU Qi-di,LIU Cheng-ju,ZHANG Jia-qi,et al. Researh progress of robot driving control based on biological induction [J]. Science in China:Series F:Information Sciences, 2009, 39(10): 1080-1094.
[10] 黄博, 姚玉峰, 孙立宁. 基于中枢神经模式的四足机器人步态控制[J]. 机械工程学报, 2010, 46(7): 16.
HUANG Bo, YAO Yu-feng, SUN Li-ning. Quadruped robot gait control based on central pattern generator [J]. Journal of Mechanical Engineering, 2010, 46(7): 16.
[11] LIU C J, WANG D W, CHEN Q J. Central pattern generator inspired control for adaptive walking of biped robots [J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2013, 43(5): 1206-1215.
[12] LIU C J, CHEN Q J, WANG G X. Adaptive walking control of quadruped robots based on central pattern generator (CPG) and reflex [J]. Journal of Control Theory and Applications, 2013, 11(3): 386-392.
[13] ZHANG X L, E M C, ZENG X Y, et al. Adaptive walking of a quadrupedal robot based on layered biological reflexes [J]. Chinese Journal of Mechanical Engineering, 2012, 25(4): 654-664.
[14] WANG M, YU J Z, TAN M, et al. A CPG-based sensory feedback control method for robotic fish locomotion [C] ∥ Control Conference (CCC), 2011 30th Chinese. Shangdong: IEEE, 2011: 4115-4120.
[15] ZHANG D B, HU D W, SHEN L C, et al. Design of a central pattern generator for bionic-robot joint with angular frequency modulation [C] ∥ 2006 IEEE International Conference on Robotics and Biomimetics. Kunming:IEEE,2006: 1664-1669.
[16] STEINGRUBE S, TIMME M, WOERGOETTER F, et al. Self-organized adaptation of a simple neural circuit enables complex robot behavior [J]. Nature Physics, 2010, 6(3): 224-230.
[17] REN G J, CHEN W H, KOLODZIEJSKI C, et al. Multiple chaotic central pattern generators for locomotion generation and leg damage compensation in a hexapod robot [C] ∥ Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Vilamoura-Algarve:IEEE, 2012: 2756-2761.
[18] DONNER M D. Real-time control of walking [M]. Boston:Birkhauser, 1987: 10-11.
[19] REN G J, CHEN W H, WANG J H, et al. Neural pattern generation and kinematics calculation for a hexapod robots adaptive locomotion control [C] ∥ Proceedings of the 3rd IFToMM International Symposium on Robotics and Mechatronics.  Singapore: Nanyang Technological University Research Publishing, 2013: 545-555.
[20] MONDADA F, FRANZI E, IENNE P. Mobile robot miniaturisation: A tool for investigation in control algorithms [M] . Berlin Heidelberg:Springer,1994: 501-513.
[21] PASEMANN F, HULSE M, ZAHEDI K. Evolved neurodynamics for robot control[C] ∥ European Symposium on Artificial Neural Networks(ESANN).Bruges, Belgium:Evere, 2003: 439-444.
[22] HUELSE M, PASEMANN F. Dynamical neural schmitt trigger for robot control [C] ∥ Proceedings of Artificial Neural Networks. New York: Springer, 2002: 783-788.

[1] 高德东, 李强, 雷勇, 徐飞, 白辉全. 基于几何逼近法的斜尖柔性穿刺针运动学研究[J]. 浙江大学学报(工学版), 2017, 51(4): 706-713.
[2] 汤志东, 贠超. 全自动快换装置快速接头技术综述[J]. 浙江大学学报(工学版), 2017, 51(3): 461-470.
[3] 徐显金, 吴龙辉, 杨小俊, 汤亮, 杨永峰. 高压直流巡检机器人的磁力驱动方法[J]. 浙江大学学报(工学版), 2016, 50(10): 1937-1945.
[4] 张湧涛, 宋志伟, 王一, 粘山坡. 基于空间网格的机器人工作点位姿标定方法[J]. 浙江大学学报(工学版), 2016, 50(10): 1980-1986.
[5] 朱雨时,杨灿军,吴世军,徐晓乐,周璞哲,单鑫. 水柱测量中的水下滑翔机转向性能[J]. 浙江大学学报(工学版), 2016, 50(9): 1637-1645.
[6] 贾松敏,卢迎彬,王丽佳,李秀智,徐涛. 分层特征移动机器人行人跟踪[J]. 浙江大学学报(工学版), 2016, 50(9): 1677-1683.
[7] 刘亚男,倪鹤鹏,张承瑞,王云飞,孙好春. 基于PC的运动视觉一体化开放控制平台设计[J]. 浙江大学学报(工学版), 2016, 50(7): 1381-1386.
[8] 丁夏清,杜卓洋,陆逸卿,刘山. 基于混合势场的移动机器人视觉轨迹规划[J]. 浙江大学学报(工学版), 2016, 50(7): 1298-1306.
[9] 张阿龙, 章明, 乔明杰, 朱伟东, 梅标. 基于视觉测量的环形轨底座位姿标定方法[J]. 浙江大学学报(工学版), 2016, 50(6): 1080-1087.
[10] 江文婷, 龚小谨, 刘济林. 基于增量计算的大规模场景致密语义地图构建[J]. 浙江大学学报(工学版), 2016, 50(2): 385-391.
[11] 黄奇伟, 章明, 曲巍崴, 卢贤刚, 柯映林. 机器人制孔姿态优化与光顺[J]. 浙江大学学报(工学版), 2015, 49(12): 2261-2268.
[12] 李巍, 赵志刚, 石广田, 孟佳东. 多机器人并联绳牵引系统的运动学及动力学解[J]. 浙江大学学报(工学版), 2015, 49(10): 1916-1923.
[13] 马子昂,项志宇. 光流测距全向相机的标定与三维重构[J]. 浙江大学学报(工学版), 2015, 49(9): 1651-1657.
[14] 何雪军, 王进, 陆国栋, 陈立. 基于蚁群算法的机器人图像绘制序列优化[J]. 浙江大学学报(工学版), 2015, 49(6): 1139-1145.
[15] 袁康正,朱伟东,陈磊,薛雷,戚文刚. 机器人末端位移传感器的安装位置标定方法[J]. 浙江大学学报(工学版), 2015, 49(5): 829-834.