土木工程 |
|
|
|
|
悬臂梁固定端不同位移边界条件下解的对比 |
杨连枝1,2, 张亮亮2,3, 余莲英2, 尚兰歌2, 高阳2, 王敏中4 |
1. 北京科技大学 土木与环境工程学院, 北京 100083; 2. 中国农业大学 理学院, 北京 100083; 3. 中国农业大学 工学院, 北京 100083; 4. 北京大学 力学与空天技术系, 北京 100871 |
|
Comparison of solutions from different displacement boundary conditions at fixed end of cantilever beams |
YANG Lian-zhi1,2, ZHANG Liang-liang2,3, YU Lian-ying2, SHANG Lan-ge2, GAO Yang2, WANG Min-zhong4 |
1. Civil and Environmental Engineering School, University of Science and Technology Beijing, Beijing 100083, China; 2. College of Science, China Agricultural University, Beijing 100083, China; 3. College of Engineering, China Agricultural University, Beijing 100083, China; 4. Department of Mechanics and Aerospace Engineering, Peking University, Beijing 100871, China |
引用本文:
杨连枝, 张亮亮, 余莲英, 尚兰歌, 高阳, 王敏中. 悬臂梁固定端不同位移边界条件下解的对比[J]. 浙江大学学报(工学版), 10.3785/j.issn.1008-973X.2014.11.007.
YANG Lian-zhi, ZHANG Liang-liang, YU Lian-ying, SHANG Lan-ge, GAO Yang, WANG Min-zhong. Comparison of solutions from different displacement boundary conditions at fixed end of cantilever beams. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 10.3785/j.issn.1008-973X.2014.11.007.
链接本文:
http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2014.11.007
或
http://www.zjujournals.com/eng/CN/Y2014/V48/I11/1955
|
1] WANG C M, REDDY J N. Shear deformable beams and plates relations wiht classical solutions [M]. New York: Elsevier, 2000: 117.
[2] TIMOSHENKO S P. On the correction for shear of the differential equation for transverse vibration of prismatic bars \[J\]. Philosophical Magazine Series 6, 1921, 41: 744-746.
[3] LEVINSON M. A new rectangular beam theory [J]. Journal of Sound and Vibration, 1981, 74(1): 81-87.
[4] TIMOSHENKO S P, GOODIER J C. Theory of elasticity [M]. New York: McGraw-Hill, 1970: 44-45.
[5] GERE J M, Goodno B J. Mechanics of Materials (8th edition) [M]. USA: Cengage Learning, 2012: 730-735.
[6] 于涛, 仲政. 均布载荷作用下功能梯度悬臂梁弯曲问题的解析解[J].固体力学学报, 2006, 27(1): 15-20.
YU Tao, ZHONG Zheng. A general solution of a clamped functionally graded cantilever-beam under uniform loading [J]. Acta Mechanica Solida Sinica, 2006, 27(1): 15-20.
[7] 杨永波, 石志飞, 陈盈. 线性分布载荷作用下梯度功能压电悬臂梁的解[J]. 力学学报, 2004, 36(3): 305-310.
YANG Yong-bo, SHI Zhi-fei, CHEN Ying. Piezoelectric cantilever actuator subjected to a linearly distributed loading [J]. Acta Mechanica Sinica, 2004, 36(3): 305-310.
[8] SHI Zhi-Fei, CHEN Ying. Functionally graded piezoelectric cantilever beam [J]. Archive of Applied Mechanics, 2004, 74: 237-247.
[9] HUANG De-jin, DING Hao-Jiang, CHEN Wei-Qiu. Analysis of functionally graded and laminated piezoelectric cantilever actuators subjected to constant voltage[J]. Smart Materials and Structures, 2008, 17: 065002.
[10] 王敏中. 关于“平面弹性悬臂梁剪切挠度问题[J]. 力学与实践,2004,26(6):66-68.
WANG Min-zhong. About “Problems on the shear deflection of a planer elastic cantilever beam” [J]. Mechanics in Engineering, 2004, 26(6): 66-68.
[11] 黄文彬.平面弹性悬臂梁剪切挠度问题[J].力学与实践,1997,19(2): 61-62.
HUANG Wen-bin. Problems on the shear deflection of a planer elastic cantilever beam [J]. Mechanics in Engineering, 1997, 19(2): 61-62.
[12] 黄文彬.平面弹性悬臂梁剪切挠度的进一步研究[J].力学与实践, 1998, 20(5): 65.
HUANG Wen-bin. Further study on the shear deflection of a planer elastic cantilever beam [J] . Mechanics in Engineering, 1998, 20(5):65.
[13] 唐玉花,王鑫伟.关于“平面弹性悬臂梁剪切挠度问题”的进一步研究[J].力学与实践,2008,30:97-99.
TANG Yu-hua, WANG Xin-wei. Further study on “Problems on the shear deflection of a planer elastic cantilever” [J]. Mechanics in Engineering, 2008, 30: 97-99.
[14] COWPER G R. The shear coefficients in Timoshenkos beam theory [J]. ASME Journal of Applied Mechanics, 1966, 33: 335-340. |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|