Please wait a minute...
J4  2012, Vol. 46 Issue (9): 1565-1571    DOI: 10.3785/j.issn.1008-973X.2012.09.003
无线电电子学、电信技术     
基于三维激光雷达的动态障碍实时检测与跟踪
杨飞,朱株,龚小谨,刘济林
浙江大学 信息科学与电子工程学系,浙江 杭州 310027
Real-time dynamic obstacle detection and tracking using 3D Lidar
YANG Fei, ZHU Zhu, GONG Xiao-jin, LIU Ji-lin
Department of Information Science and Electronic Engineering, Zhejiang University, Hangzhou 310027, China
 全文: PDF  HTML
摘要:

为了解决在大数据量的情况下实现高效检测与跟踪的难点,提出一种室外动态未知环境下自主车的多障碍实时检测与跟踪的算法.由于Velodyne 64线三维激光雷达具有数据量大、精度高等特点,采用其与相机结合感知环境.算法结合从图像处理中得到的道边信息将原始激光雷达数据的感兴趣区域转化为栅格地图,在地图上采用区域标记和模板匹配的方法进行聚类和特征提取,检测得到盒子模型的障碍物,并进行障碍物跟踪.为了避免在多障碍物的情况下出现虚警和漏检,基于多假设跟踪数据关联和卡尔曼滤波来跟踪连续多帧的障碍物.本算法在自主车平台上能够以每帧100 ms实现准确、稳定地检测和跟踪.

Abstract:

In order to detect and track obstacles under large amount of data efficiently, an approach for real-time multiple obstacle detection and tracking in dynamic unknown environment was presented. The Velodyne 64E 3D Lidar has the property of large amount of data and high accuracy, which was combined with camera for environment perception. The algorithm firstly coverts the region of interest of the Lidar data into a grid map according to road lane information obtained from image processing, then uses region labeling and template matching to detect box-model obstacles on the grid map, and finally tracks the obstacles. In order to avoid false alarm or miss matching, multiple hypothesis tracking and Kalman filter were used for obstacle tracking. The approach can detect obstacles accurately and track stably within 100 ms per frame on the autonomous vehicle.

出版日期: 2012-09-01
:     
基金资助:

国家自然科学基金资助项目(90820306).

通讯作者: 龚小谨,女,讲师.     E-mail: gongxj@zju.edu.cn
作者简介: 杨飞(1986-),男,硕士生,主要从事机器视觉研究.E-mail:flyyoung@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

杨飞,朱株,龚小谨,刘济林. 基于三维激光雷达的动态障碍实时检测与跟踪[J]. J4, 2012, 46(9): 1565-1571.

YANG Fei, ZHU Zhu, GONG Xiao-jin, LIU Ji-lin. Real-time dynamic obstacle detection and tracking using 3D Lidar. J4, 2012, 46(9): 1565-1571.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2012.09.003        http://www.zjujournals.com/eng/CN/Y2012/V46/I9/1565

[1] VU T D, BURLET J, AYCARD O. Gridbased localization and online mapping with moving objects detection and tracking: new results[C]∥Intelligent Vehicles Symposium. Eindhoven: IEEE, 2008: 684-689.
[2] PETROVSKAYA A, THRUN S. Model based vehicle detection and tracking for autonomous uban diving[J]. Autonomous Robots, 2009, 26:123-129.
[3] DARMS M, RYBSKI P E, BAKER E, et al.. Obstacle detection and tracking for the urban challenge[J]. Intelligent Transportation Systems, 2009, 10(3): 475-485.
[4] DARMS M, RYBSKI P E, URMSON C. Classification and tracking of dynamic objects with multiple sensors for autonomous driving in urban environments[C] ∥Intelligent Vehicles Symposium. Eindhoven: IEEE, 2008: 1197-1202.
[5] BLACKMAN S S. Multiple hypothesis tracking for multiple target tracking[J]. Aerospace and Electronic Systems Magazine, 2004, 19(1): 5-18.
[6] LEONARD J, HOW J, TELLER S, et al. A perceptiondriven autonomous urban vehicle[J]. Springer Tracts in Advanced Robotics, 2009, 56: 163-230.
[7] KONSTANTINOVA P, UDVAREV A, SEMERDJIEV T. A study of a target tracking algorithm using global nearest neighbor approach[C]∥ International Conference on Computer Systems and Technologies. Sofia:Citeseer, 2003: 290-295.
[8] HE Lifeng, CHAO Yuyang, SUZUKI K, et al. Fast connectedcomponent labeling[J]. Pattern Recognition, 2009, 42(9): 1977-1987.
[9] TUBBS J D. A note on binary template matching[J]. Pattern Recognition, 1989, 22(4): 359-365.
[10] FERGUSON D, DARMS M,URMSON C, et al. Detection, prediction, and avoidance of dynamic obstacles in urban environment[C]∥ Intelligent Vehicles Symposium. Eindhoven: IEEE, 2008: 1149-1154.
[11] REID D B. An algorithm for tracking multiple targets[J]. Automatic Control, 1979, 24(6): 843-854.
[12] WELCH G, BISHOP G. An introduction to the Kalman filter[R]. North Carolina, USA: University of North Carolina, 1995.

[1] 宁志华,何乐年,胡志成. 一种高压高可靠性开关电源控制芯片[J]. J4, 2014, 48(3): 377-383.
[2] 李林,陈家旺,顾临怡,王峰. 轴向柱塞泵/马达变量阀配流机构[J]. J4, 2014, 48(1): 29-34.
[3] 陈钊,余锋,陈婷婷. 基于日志结构的闪存均衡回收策略[J]. J4, 2014, 48(1): 92-99.
[4] 蒋湛,姚晓明,林兰芬. 基于特征自适应的本体映射方法[J]. J4, 2014, 48(1): 76-84.
[5] 陈迪仕 ,张宇,李平. 微小型无人直升机地面效应建模[J]. J4, 2014, 48(1): 154-160.
[6] 霍新新,褚金奎,韩冰峰,姚斐.  基于多个压电换能器的接口电路[J]. J4, 2013, 47(11): 2038-2045.
[7] 杨鑫,许端清,杨冰. 基于不规则性的并行计算方法[J]. J4, 2013, 47(11): 2057-2064.
[8] 王玉强,张宽地,陈晓东. 胶黏钢-混凝土组合梁的界面行为数值分析[J]. J4, 2013, 47(9): 1593-1598.
[9] 崔何亮, 张丹, 施斌.  布里渊分布式传感的空间分辨率及标定方法[J]. J4, 2013, 47(7): 1232-1237.
[10] 彭勇,徐小剑. 集料分布对沥青混合料劈裂强度影响数值分析[J]. J4, 2013, 47(7): 1186-1191.
[11] 伍晓榕,裘乐淼,张树有,孙良峰,郭传龙. 模糊语境下的复杂系统关联FMEA方法[J]. J4, 2013, 47(5): 782-789.
[12] 金波,陈诚,李伟. 具有半球形足端的六足机器人步态修正算法[J]. J4, 2013, 47(5): 768-774.
[13] 钟世英, 吴晓君, 蔡武军, 凌道盛, 蒋祝金, 王顺玉. 月面软着陆足垫水平拖曳模型试验装置研制[J]. J4, 2013, 47(3): 465-471.
[14] 袁幸,朱永生,张优云,洪军,祁文昌. 基于正反问题的滚动轴承损伤程度评估[J]. J4, 2012, 46(11): 1960-1967.
[15] 王鹿军, 吕征宇. 基于LSSVM的电梯交通模式的模糊识别[J]. J4, 2012, 46(7): 1333-1338.