Please wait a minute...
J4  2011, Vol. 45 Issue (9): 1521-1527    DOI: 10.3785/j.issn.1008-973X.2011.09.003
计算机技术﹑电信技术     
基于三次样条插值的无线信号强度衰减模型
陈岭,许晓龙,杨清,陈根才
浙江大学 计算机科学和技术学院, 浙江 杭州 310027
Wireless signal strength propagation model
base on cubic spline interpolation
CHEN Ling, XU Xiao-long, YANG Qing, CHEN Gen-cai
College of Computer Science and Technology, Zhejiang University, Hangzhou 310027, China
 全文: PDF  HTML
摘要:

为提高指纹识别定位技术在无线网络中的应用效率,解决无线信号强度衰减模型计算效率低、构建复杂以及参数难确定等问题,提出使用较少参数实现精确的无线信号强度传播模型.该模型是一种经验模型,其由距离或信号强度的三次样条插值函数来调整经典衰减模型中的衰减因子,无需增加额外参数,计算简单.实验结果显示:在室内走廊环境中,该模型以10%的样本数据进行训练后,无线信号强度预测误差不超过0.4 dBm,由该模型生成校准数据,利用指纹识别法可获得平均误差1.3 m以内的定位精度.

Abstract:

An accurate wireless signal strength propagation model with less parameters was proposed to increase the application efficiency of fingerprint based positioning approaches in wireless networks, and to address the problems of wireless signal attenuation models, e.g. low computation efficiency, build complexity, and difficulty of parameter setting. The proposed model is an empirical model, which changes the attenuation factor n of the classical attenuation model, in terms of a cubic interpolation spline function of distance or received signal strength indicator (RSSI). The proposed model does not introduce any new parameter and is easy to compute. Experimental results indicated that in an indoor corridor environment, by trained with 10% samples, the proposed model estimated the wireless signal strength with an average error less than 0.4 dBm. Employing the calibration data generated by the proposed model, the fingerprint based positioning approach achieved a mean error less than 1.3 m.

出版日期: 2011-09-01
:  TP 311  
基金资助:

国家“核高基”重大科技专项资助课题(2010ZX01042-002-003);国家自然科学基金资助项目(60703040);浙江省科技计划优先主题资助项目(2007C13019);浙江省自然科学基金资助项目(Y107178).

作者简介: 陈岭(1977-),男,副教授,从事普适计算、人机交互研究.E-mail: lingchen@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  

引用本文:

陈岭,许晓龙,杨清,陈根才. 基于三次样条插值的无线信号强度衰减模型[J]. J4, 2011, 45(9): 1521-1527.

CHEN Ling, XU Xiao-long, YANG Qing, CHEN Gen-cai. Wireless signal strength propagation model
base on cubic spline interpolation. J4, 2011, 45(9): 1521-1527.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2011.09.003        https://www.zjujournals.com/eng/CN/Y2011/V45/I9/1521

[1] BAHL P, PADMANABHAN V N. RADAR: an inbuilding RFbased user location and tracking system[C]∥ Proceeding of IEEE INFOCOM. Israel: IEEE, 2000: 775-789.
[2] HAZAS M, HOPPER A. Broadband ultrasonic location systems for improved indoor positioning[J]. IEEE Transactions on Mobile Computing, 2006, 5(5): 536-547.
[3] CHENG Y, CHAWATHE Y, LAMARCA A. Accuracy characterization for metropolitanscale WiFi localization[C]∥ Proceeding of MobiSys. Seattle: ACM, 2005: 233-245.
[4] Ascension technology corporation [EB/OL]. [2009-12-01]. http:∥www.ascensiontech.com.
[5] GONCALO G, HELENA S. Indoor location system using ZigBee technology[C]∥ Proceeding of International Conference on Sensor Technologies and Applications. Washington: IEEE, 2009:152-157.
[6] CHEHRI A, FORTIER F, TARDIF P M. On the TOA estimation for UWB ranging in complex confined area[C]∥ Proceeding of International Symposium on Signals, Systems and Electronics.[S.l.]: IEEE, 2007: 533-536.
[7] PENG R, SICHITIU M L. Angle of arrival localization for wireless sensor networks[C]∥ Proceeding of IEEE Communications Society on Sensor and Ad Hoc Communications and Networks. [S.l.]:IEEE, 2006: 374-382.
[8] TAKENQA C M, KYAMAKY. A robust positioning system based on fingerprint approach[C]∥ Proceeding of ACM International Workshop on Mobility Management and Wireless Access. Greece: ACM, 2007: 1-8.
[9] CHEN Y, YANG Q, Yin J, et al. Powerefficient accesspoint selection for indoor location estimation[J]. IEEE Transactions on Knowledge and Data Engineering, 2006, 18(7): 877-888.
[10] ISKANDER M F, YUN Z. Propagation prediction models for wireless communication systems[J]. IEEE Transactions on Microwave Theory and Techniques, 2002, 50(3): 662-673.
[11] 施亚妮, 李丽娟. FDTD方法吸收边界条件的研究及应用[J]. 计算机仿真, 2008, 25(7): 113-148.
SHI Yani, LI Lijuan. Research on absorbing boundary condition in FDTD method and its application[J]. Computer Simulation, 2008, 25(7): 113-148.

[12] YUAN M, ARIJIT D, JUNG B H. Conditions for generation of stable and accurate hybrid TDFD MoM solutions[J].IEEE Transactions on Microwave Theory and Techniques, 2006, 54(1): 2552-2563.
[13] 黄永明, 吕英华, 徐立,等. 室内无线传播中一种混合建模方法的改进[J]. 北京邮电大学学报, 2004, 27(1): 13-17.
HUANG Yongming, LU Yinghua, XU Li, et al. An improved hybrid method for modeling indoor radio propagation[J]. Journal of Beijing University of Posts and Telecommunications, 2004, 27(1): 13-17.
[14] Friis transmission equation [EB/OL]. [2009-12-01].http:∥en.wikipedia.org/wiki/Friis_transmission_equation.
[15] LASSABE F, CANALDA P, CHATONNAY P, et al. A Friisbased calibrated model for WiFi terminals positioning[C]∥ Proceeding of IEEE International Symposium on a World of Wireless Mobile and Multimedia Networks. Taormina: IEEE, 2005: 382-387.
[16] AKL R, TUMMALA D, LI X. Indoor propagation modeling at 24GHz for IEEE 80211 networks[C]∥ Proceeding of IASTED International MultiConference on Wireless and Optical Communications, Wireless Networks and Emerging Technologies. Banff: IASTED/ACTA, 2006: 14-19.
[17] MEDBO J, BERG J E. Simple and accurate path loss modeling at 5GHz in indoor environments with corridors[C]∥ Proceeding of IEEE Vehicular Technology Conference.[S.l.]: IEEE, 2000: 30-36.
[18] WANG Y, JIA X, LEE H K. An indoors wireless positioning system based on wireless local area network infrastructure[C]∥ Proceeding of International Symposium on Satellite Navigation Technology Including Mobile Positioning and Location Services. Melbourne: SatNav, 2003: 21-34.
[19] AAMODT B K. CC2431 location engine[S]. Texas: Application Note AN042, 2006.
[20] EDWARDS A A, DENNIS J A. Polyfit  a computer program for fitting a specified degree of polynomial to data points[R]. London:UK National Radiological Protection Board, NRPBM 11, 1973.
[21] KEYS R G. Cubic convolution interpolation for digital image processing[J]. IEEE

[1] 柯海丰,应晶. 基于R-ELM的实时车牌字符识别技术[J]. J4, 2014, 48(2): 0-0.
[2] 金苍宏,吴明晖,应晶. 一种基于上下文索引的文本匹配框架[J]. J4, 2013, 47(9): 1537-1546.
[3] 朱凡微, 吴明晖, 应晶. 面向大规模无结构数据的Web方面搜索方法[J]. J4, 2013, 47(6): 990-999.
[4] 冯培恩, 刘屿, 邱清盈, 李立新. 提高Eclat算法效率的策略[J]. J4, 2013, 47(2): 223-230.
[5] 刘颖, 陈岭, 陈根才, 赵江奇, 王敬昌. 基于历史点击数据的集合选择方法[J]. J4, 2013, 47(1): 23-28.
[6] 殷婷,肖敏,陈岭,赵江奇,王敬昌. 基于CQPM的OLAP查询日志挖掘及推荐[J]. J4, 2012, 46(11): 2052-2060.
[7] 肖敏, 陈岭, 夏海元, 陈根才. 基于数据仓库内在特征的OLAP关键词查询[J]. J4, 2012, 46(6): 974-979.
[8] 张丽平,李松,郝晓红,郝忠孝. Jrv粗糙Vague区域关系[J]. J4, 2012, 46(1): 105-111.
[9] 吴明晖, 应晶. 业务过程建模及其形式化验证[J]. J4, 2011, 45(2): 280-287.
[10] 傅朝阳, 高济, 周尤明. 词法多重散列与包容语义相结合的服务查找[J]. J4, 2010, 44(12): 2274-2283.
[11] 杨清, 陈岭, 陈根才. 基于单加速度传感器的行走距离估计[J]. J4, 2010, 44(9): 1681-1686.
[12] 熊伟, 王晓暾. 基于质量功能展开的可信软件需求映射方法[J]. J4, 2010, 44(5): 881-886.
[13] 张引, 何浩, 赵丽娜, 张三元. 网构软件模型中的抽象状态机设计[J]. J4, 2010, 44(5): 923-929.
[14] 蒋涛, 应晶, 吴明晖, 等. 一种面向特征增量的软件产品线分析方法[J]. J4, 2009, 43(12): 2142-2148.
[15] 沈斌, 姚敏. 关联且项项正相关频繁模式挖掘[J]. J4, 2009, 43(12): 2171-2177.