Please wait a minute...
J4  2011, Vol. 45 Issue (8): 1423-1429    DOI: 10.3785/j.issn.1008-973X.2011.08.016
土木工程     
钢筒仓散料静态压力的三维有限元模拟
杨鸿, 杨代恒, 赵阳
浙江大学 空间结构研究中心,浙江省空间结构重点实验室,浙江 杭州310058
Three-dimensional finite element simulation of
static granular material pressure for steel silos
YANG Hong, YANG Dai-heng, ZHAO Yang
Space Structures Research Center, Zhejiang Provincial Key Laboratory of Space Structures, Zhejiang University,
Hangzhou 310058, China
 全文: PDF  HTML
摘要:

为考察所储存散料对钢筒仓仓壁的静态压力,建立考虑散料与仓壁相互作用的钢筒仓静态散料压力三维有限元分析模型.散料假定为各向同性,塑性阶段采用DruckerPrager塑性模型,散料与仓壁之间的接触效应采用刚柔接触模型和面面接触方法进行模拟.利用所建立的有限元模型对平底钢筒仓(浅仓和深仓)及锥底钢筒仓的散料压力进行数值模拟,并将数值结果与欧洲钢筒仓规范、我国粮食钢板筒仓设计规范进行对比分析.文中还对平底钢筒仓散料的泊松比、内摩擦角、膨胀角和摩擦系数进行参数分析,结果表明泊松比和内摩擦角的影响较大.

Abstract:

In order to simulate the static pressures from stored granular materials, a three-dimensional finite element model accounting for the interaction between the granular material and the silo wall was established. The stored granular material was considered to follow a law of behavior of isotropic elastic material with the Drucker-Prager plasticity criterion in the plastic range, and the interaction between the stored material and the silo wall was simulated by the rigid-flexible contact model and the face-to-face contact method. Granular material pressures for both flat-bottomed steel silos (shallow silos and deep silos) and conical-bottomed steel silos were simulated employing the proposed FE model, and the results were compared with those of the Eurocode for steel silos and the Chinese design code for grain steel silos. A parametric analysis on flat-bottomed steel silos was also carried out to study the effects of granular material’s Poisson’s ratio, internal friction angle, dilatancy angle and friction coefficient, and it is found that the effects of the Poisson’s ratio and internal friction angle are obvious.

出版日期: 2011-09-08
:  TU 33  
基金资助:

国家自然科学基金资助项目(50778159,50208017);教育部新世纪优秀人才支持计划资助项目(NCET-07-0759);浙江省重点科技创新团队资助项目(2010R50034).

通讯作者: 赵 阳(1970—),男,教授,博导,     E-mail: ceyzhao@zju.edu.cn
作者简介: 杨鸿(1984—),女,硕士,主要从事空间结构及壳体结构研究. E-mail: fidelia.1106@yahoo.com.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  

引用本文:

杨鸿, 杨代恒, 赵阳. 钢筒仓散料静态压力的三维有限元模拟[J]. J4, 2011, 45(8): 1423-1429.

YANG Hong, YANG Dai-heng, ZHAO Yang. Three-dimensional finite element simulation of
static granular material pressure for steel silos. J4, 2011, 45(8): 1423-1429.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2011.08.016        https://www.zjujournals.com/eng/CN/Y2011/V45/I8/1423

[1] ENV 199341. Eurocode 3: Design of steel structures, part 41: Silos [S]. Brussels: European Committee for Standardization, 1999.
[2] RANKINE W J M. On the stability of loose earth [J]. Philosophical Transactions of the Royal Society of London, 1857, 147: 9-27.
[3] GB503222001.粮食钢板筒仓设计规范[S].北京:中国计划出版社,2001.
GB 503222001. Code for design of grain steel silos [S]. Beijing: China Planning Press, 2001.
[4] HOLST J M F G, OOI J Y, ROTTER J M, el al. Numerical modeling of silo filling. I: continuum analyses [J]. Journal of Engineering Mechanics, ASCE, 1999, 125 (1): 94-103.
[5] HOLST J M F G, OOI J Y, ROTTER J M, el al. Numerical modeling of silo filling. II: discrete element analyses [J]. Journal of Engineering Mechanics, ASCE, 1999, 125 (1): 104-110.
[6] MARTINEZ M A, ALFARO I, DOBLARE M. Simulation of axisymmetric discharging in metallic silos: analysis of the induced pressure distribution and comparison with different standards [J]. Engineering Structures, 2002, 24 (12): 1561-1574.
[7] GUAITA M, COUTOL A, AYUGA F. Numerical simulation of wall pressure during discharge of granular material from cylindrical silos with eccentric hoppers [J]. Biosystems Engineering, 2003, 85 (1): 101-109.
[8] JUAN A, MORAN J M, GUERRA M I, et al. Establishing stress state of cylindrical metal silos using finite element method: comparison with ENV 1993 [J]. ThinWalled Structures, 2006, 44 (11): 1192-1200.
[9] VIDAL P, GALLEGO E, GUAITAC M, et al. Finite element analysis under different boundary conditions of the filling of cylindrical steel silos having an eccentric hopper [J]. Journal of Constructional Steel Research, 2008, 64 (3): 480-492.
[10] ROTTER J M, HOLST J M F G, OOI J Y, et al. Silo pressures predictions using discreteelement and finite element analyses [J]. Philosophical Transaction Mathematical, Physical and Engineering Sciences, 1998, 356(1747): 2685-2712.
[11] 杨代恒.钢筒仓设计研究及散料压力的数值模拟[D]. 杭州:浙江大学,2008.
YANG Daiheng. Design research of steel silos and numerical simulation of bulk material pressure [D]. Hangzhou: Zhejiang University, 2008.
[12] AYUGA F, GUAITA M, AGUADO P. Static and dynamic silo loads using finite element models [J]. Journal of Agricultural Engineering Research, 2001, 78 (3): 299-308.

[1] 杨宏康, 高博青. 基于Floquet理论的储液罐动力稳定性分析[J]. J4, 2013, 47(2): 378-384.
[2] 关富玲, 钱利锋. 新型陆基充气球天线力学分析与测试[J]. J4, 2012, 46(2): 257-262.
[3] 鲍侃袁, 沈国辉, 孙炳楠. 双曲冷却塔的脉动风荷载模拟和风致响应[J]. J4, 2010, 44(5): 955-961.