Please wait a minute...
J4  2010, Vol. 44 Issue (5): 955-961    DOI: 10.3785/j.issn.1008-973X.2010.05.020
鲍侃袁1, 沈国辉1, 孙炳楠1,2
1.浙江大学 建筑工程学院,浙江 杭州 310027; 2.浙江大学宁波理工学院 土木建筑工程分院,浙江 宁波 315100
Numerical simulation of fluctuating wind load and windinduced
response of large hyperbolic cooling tower
BAO Kan-yuan1, SHEN Guo-hui1, SUN Bing-nan1,2
1.College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310027, China;
2. School of Civil Engineering and Architecture, Ningbo Institute of Technology, Zhejiang University, Ningbo 315100, China
 全文: PDF  HTML

采用线性滤波法中的自回归模型(AR)法对冷却塔表面空间相关的多点脉动风压时程进行模拟,分析脉动风压在时域和频域上的分布特征,发现准定常假设不够准确.同时采用有限元方法对冷却塔的自振频率分布和模态特征进行讨论,发现冷却塔的自振频率较为密集,前40阶自振频率为1.0~2.2 Hz.通过冷却塔在脉动风压作用下的瞬态响应分析,得到冷却塔各响应的时域和频域特征,描述响应中的背景分量和共振分量的分布特点,并探讨AR法中采样间隔的合理取值.通过对有限元瞬态分析的结果分析指出,风致位移响应在塔身颈部附近达到最大,Mises应力响应则在塔底附近达到最大值.


An autoregressive (AR) linear filter method was used to simulate the spatial correlative multiple fluctuating wind load on the outside surface of cooling tower. The characteristic of simulation results was analyzed with the time domain and the frequency domain method. Results indicate that quasisteady theory is not appropriate. The distribution of natural frequency and the mode characteristic were calculated through the finite element method. The natural frequencies were densely distributed, and first 40 of them were confined to 1.0~2.2 Hz. The transient analysis was conducted under the fluctuating wind load. Then the various responses of cooling tower in time domain and frequency domain were achieved. The background and the resonant parts were studied respectively, and the appropriate sampling interval was discussed. Transient dynamic analysis results show that the wind induced displacement reaches maximum at someplace close to neck and Mises stress reaches maximum at someplace near the bottom.

出版日期: 2012-03-19
:  TU 33  


通讯作者: 沈国辉,男,副教授.     E-mail:
作者简介: 鲍侃袁(1981—),男,浙江杭州人,博士生,从事结构风工程的研究.E-mail:
E-mail Alert


鲍侃袁, 沈国辉, 孙炳楠. 双曲冷却塔的脉动风荷载模拟和风致响应[J]. J4, 2010, 44(5): 955-961.

BAO Kan-Yuan, CHEN Guo-Hui, SUN Bing-Nan. Numerical simulation of fluctuating wind load and windinduced
response of large hyperbolic cooling tower. J4, 2010, 44(5): 955-961.


[1] STEINMETZ R L, BILLINGTON D P, ABEL J F. Hyperbolic cooling tower dynamic response to wind [J]. Journal of the Structural Division, 1978, 104(ST1): 3553.
[2] SUN T F, ZHOU L M. Wind pressure distribution around a ribless hyperbolic tower [J]. Journal of Wind Engineering and Industrial Aerodynamics, 1983, 14(13): 181192.
[3] HASHISH M G, ABUSITTA S H. Response of hyperbolic cooling towers to turbulent wind [J]. Journal of the Structural Division, 1974, 100(ST5): 10371051.
[4] KAREEM A, CHENG C M. Pressure and force fluctuations on isolated roughened circular cylinders of finite height in boundary layer flows [J]. Journal of Fluids and Structures, 1999, 13(7/8): 907933.
[5] REED D A, SCANLAN R H. Time series analysis of cooling tower wind loading [J]. Journal of Structural Engineering, 1983, 109(2): 538554.
[6] IANNUZZI A, SPINELL P. Artificial wind generation and structural response [J]. Journal of Structural Engineering, 1987, 113(12): 23822398.
[7] DEODATIS G. Simulation of ergodic multivariate stochastic process [J]. Journal of Engineering Mechanics, 1996, 122(8): 778787.
[8] MIGNOLET P M, SPANOS P D. Recursive simulation of stationary multivariate random process [J]. Journal of Applied Mechanics, 1987, 54(7): 674680.
[9] KAPANIA R K, YANG T Y. Time domain random wind response of cooling tower [J]. Journal of Engineering Mechanics, 1984, 110(10): 15241543.
[10] NASIR A M, THAMBIRATNAM D P, BUTLER D, et al. Dynamics of axisymmetric hyperbolic shell structures [J]. ThinWalled Structures, 2002, 40(78) : 665690.
[11] JUHASOVA E, BITTNAR Z, FISCHER O. Vibration characteristics of coolingtower shell [J]. Journal of Wind Engineering and Industrial Aerodynamics, 1983, 12(2): 145154.
[12] 中华人民共和国建设部.GB/T 50102—2003 工业循环水冷却设计规范[S].北京:中国计划出版社,2003.
Ministry of Construction P.R.China. GB/T 50102—2003 Code for design of cooling for industrial recirculating water [S]. Beijing: China Planning Press, 2003.
[13] PIRNER M. Wind pressure fluctuation on a cooling tower [J]. Journal of Wing Engineering and Aerodynamics, 1982, 10(3): 343360.
[14] SCANLAN R H, FORTIER L J. Turbulent winds and pressure effects around a rough cylinder at high Reynolds number [J]. Journal of Wind Engineering and Industrial Aerodynamics, 1982, 9(3): 207236.
[15] 中华人民共和国建设部.GB50009—2001 建筑结构荷载规范[S].北京:中国计划出版社,2002.
Ministry of Construction P.R.China. GB50009—2001 Load code for the design of building structures [S]. Beijing: China Planning Press, 2002.
[16] 陈凯,魏庆鼎.冷却塔风致振动试验研究[C]∥第11届全国结构风工程学术会议论文集.三亚:[s.n.],2003: 177182.
CHEN Kai, WEI Qingding. Experimental study on wind induced vibration of cooling towers [C]∥ Proceedings of the 11th National Conference on Structural Wind Engineering. Sanya: [s. n.], 2003: 177182.
[17] DAMJSKOB H, TUMMRTD N. Back to future of the hyperbolic concrete tower [C]∥ Proceedings of the 5th International Symposium on Natural Draught Cooling Towers. London: A.A.Balkema Publishers, 2004: 321.

[1] 杨宏康, 高博青. 基于Floquet理论的储液罐动力稳定性分析[J]. J4, 2013, 47(2): 378-384.
[2] 关富玲, 钱利锋. 新型陆基充气球天线力学分析与测试[J]. J4, 2012, 46(2): 257-262.
[3] 杨鸿, 杨代恒, 赵阳. 钢筒仓散料静态压力的三维有限元模拟[J]. J4, 2011, 45(8): 1423-1429.