Please wait a minute...
J4  2011, Vol. 45 Issue (7): 1244-1247    DOI: 10.3785/j.issn.1008-973X.2011.07.017
机械与能源工程     
气-液与气体工质热声发动机性能对比
汤珂,雷田,林小钢,金滔
浙江大学 制冷与低温研究所,浙江 杭州 310027
Performance comparison of thermoacoustic engine with
gas-liquid and gas oscillation
TANG Ke, LEI Tian, LIN Xiao-gang, JIN Tao
Institute of Refrigeration and Cryogenics, Zhejiang University, Hangzhou 310027, China
 全文: PDF  HTML
摘要:

为了降低热声发动机的谐振频率并增大压比,建立采用U形谐振管的驻波型热声发动机.将液柱引入U形谐振管,与热声核部分的气体工质形成气-液耦合振动系统.采用水作为液柱,将氮气和氦气分别作为气体工质,进行气-液工质耦合振动与单纯气体工质热声发动机性能的对比实验.实验结果表明,无论氮-水还是氦-水耦合振动热声发动机系统均获得了低于8 Hz的谐振频率,气-液耦合振动系统的谐振频率明显低于单纯气体系统;采用气-液耦合振动能够获得比单纯气体系统更大的压比.采用气-液耦合振动实现的低谐振频率和大压比对于改善热声驱动脉管制冷系统在深低温区的制冷性能是有利的.

Abstract:

A standing-wave thermoacoustic engine with a U-shaped resonant tube was constructed in order to reduce the resonant frequency and increase the pressure ratio. A liquid column was introduced into the U-shaped resonant tube, forming the gas-liquid coupling oscillation with the gas working fluid in the thermoacoustic core. Experiments for performance comparison of the thermoacoustic engine with gas-liquid and mere gas oscillation were constructed with water as the liquid column and with nitrogen and helium as the working gas, respectively. Experimental results indicated that both nitrogen-water and helium-water coupling oscillation systems realized a resonant frequency below 8 Hz, which was obviously lower than that of either nitrogen or helium gas oscillation system. A larger pressure ratio was observed in the gas-liquid coupling oscillation thermoacoustic engine, compared with mere gas system. Relatively lower resonant frequency and larger pressure ratio are advantageous for the performance improvement of thermoacoustically driven pulse tube refrigeration at cryogenic temperature.

出版日期: 2011-07-01
:  TB 511  
基金资助:

国家自然科学基金资助项目(50806065); 高等学校博士学科点专项科研基金资助项目(200803351053).

作者简介: 汤珂(1978-),男,副教授,从事热声热机和交变流动传热等研究.E-mail: ktang@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  

引用本文:

汤珂,雷田,林小钢,金滔. 气-液与气体工质热声发动机性能对比[J]. J4, 2011, 45(7): 1244-1247.

TANG Ke, LEI Tian, LIN Xiao-gang, JIN Tao. Performance comparison of thermoacoustic engine with
gas-liquid and gas oscillation. J4, 2011, 45(7): 1244-1247.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2011.07.017        https://www.zjujournals.com/eng/CN/Y2011/V45/I7/1244

[1] BACKHAUS S, SWIFT G W. A thermoacousticstirling heat engine [J]. Nature, 1999, 399(6734): 335-338.
[2] ARMAN B, WOLLAN J J, SWIFT G W, et al. Thermoacoustic natural gas liquefiers and recent developments [C]// Cryogenics and Refrigeration Proceedings of ICCR’2003. Beijing: International Academic Publishers, 2003: 123-127.
[3] CHEN Guobang, TANG Ke, JIN Tao. Advances in thermoacoustic engine and its application to pulse tube refrigeration [J]. Chinese Science Bulletin, 2004, 49(13): 1319-1328.
[4] 汤珂, 陈国邦, 包锐,等. 负载阻抗对热声发动机性能影响分析 [J]. 浙江大学学报:工学版, 2006, 40(10): 1792-1796.
TANG Ke, CHEN Guobang, BAO Rui, et al. Influence of load impedance on performance of thermoacoustic engine [J]. Journal of Zhejiang University: Engineering Science, 2006, 40(10): 1792-1796.
[5] TANG Ke, BAO Rui, CHEN Guobang, et al. Thermoacoustically driven pulse tube cooler below 60 K [J]. Cryogenics, 2007, 47(9/10): 526-529.
[6] HU Jianying, LUO Ercang, LI Shanfeng, et al. Heatdriven thermoacoustic cryocooler operating at liquid hydrogen temperature with a unique coupler [J]. Journal of Applied Physics, 2008, 103(10): 104906.
[7] MIGLIORI A, SWIFT G W. Liquidsodium thermoacoustic engine [J]. Applied Physics Letters, 1988, 53(5): 355-357.
[8] SWIFT G W. A liquidmetal magnetohydrodynamic acoustic transducer [J]. Journal of the Acoustical Society of America, 1988, 83(1): 350-361.
[9] BACKHAUS S, TWARD E, PETACH M. Travellingwave thermoacoustic electric generator [J]. Applied Physics Letters, 2004, 85(6): 1085-1087.
[10] LUO Ercang, WU Zhanghua, DAI Wei, et al. A 100 W class travelingwave thermoacoustic electricity generator [J]. Chinese Science Bulletin, 2008, 53(9): 1453-1456.
[11] CASTREJNPITA A A, HUELSZ G. Heattoelectricity thermoacousticmagnetohydrodynamic conversion [J]. Applied Physics Letters, 2007, 90(17): 174110.
[12] WEST C D. Liquid piston stirling engines [M]. New York: Van Nostrand Reinhold Company, 1983: 1-9.
[13] 汤珂, 林小钢, 黄忠杰,等. 气液耦合振动对热声发动机性能的影响[J]. 工程热物理学报, 2009, 30(10): 1625-1627.
TANG Ke, LIN Xiaogang, HUANG Zhongjie, et al. Effect of liquid piston mass on performance of thermoacoustic engine with gasliquid coupling oscillation [J]. Journal of Engineering Thermophysics, 2009, 30(10): 1625-1627.
[14] TANG Ke, LEI Tian, JIN Tao, et al. A standingwave thermoacoustic engine with gasliquid coupling oscillation [J]. Applied Physics Letters, 2009, 94(25): 254101.

No related articles found!