Please wait a minute...
J4  2011, Vol. 45 Issue (6): 977-983    DOI: 10.3785/j.issn.1008-973X.2011.06.003
自动化技术、计算机技术     
基于GA-ANN的非线性半参数建模方法
段斌, 梁军, 费正顺, 杨敏, 胡斌
浙江大学 工业控制技术国家重点实验室,浙江 杭州310027
Nonlinear semi-parametric modeling mothed based on GA-ANN
DUAN Bin, LIANG Jun, FEI Zheng-shun, YANG Min, HU Bin
State Key Laboratory of Industrial Control Technology, Zhejiang University, Hangzhou 310027, China
 全文: PDF  HTML
摘要:

为结合参数模型与非参数模型各自的优势,提高建模精度,将非线性半参数模型引入到工业过程建模中.提出基于遗传算法和神经网络的非线性半参数模型的建模方法及结构方案,并给出同时估计参数模型部分和非参数模型部分的交叉循环迭代的算法步骤.对算法中的神经网络的设计和遗传算法进行了改进研究,重点讨论了在增加精英保留策略、增加算法的记忆功能、提出新的适应度计算方法和交叉变异策略等方面的改进措施.采用聚乙烯装置的现场工业数据对方法的有效性进行了验证.结果表明:半参数模型比传统的参数模型有更好的预测精度,并能够较好地跟踪过程变化.

Abstract:

Nonlinear se-mi-parametric models are introduced for industrial process modeling to improve the modeling accuracy by taking the advantages of both parameter and nonparameter models. The modeling methodology and structure of nonlinear semiparametric modeling are proposed based on the genetic algorithm and the neural network, and the cross-loop iterative algorithm procedures are also introduced for estimating the parameters of both the parametric and non-parametric parts. Then, the design of neural network and the genetic algorithm are investigated, which increase the elite preserving strategy, enhance the memory function, propose an innovative fitness calculation method, and improve the crossover and mutation strategy. The on-site industrial data of polyethylene plant is used to demonstrate the effective of this method. The result shows that the proposed approach is more accurate in prediction than the conventional parametric models and can better track the variation of the process.

出版日期: 2011-07-14
:  TP 277  
基金资助:

国家“863”高技术研究发展计划资助项目(2007AA04Z168, 2009AA04Z154);国家自然科学基金资助项目(60574047);教育部博士点基金资助项目(20050335018).

通讯作者: 梁军,男,教授.     E-mail: jliang@iipc.zju.edu.cn
作者简介: 段斌(1986—),男,硕士生,从事智能优化和系统建模的研究.E-mail:bduan@iipc.zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  

引用本文:

段斌, 梁军, 费正顺, 杨敏, 胡斌. 基于GA-ANN的非线性半参数建模方法[J]. J4, 2011, 45(6): 977-983.

DUAN Bin, LIANG Jun, FEI Zheng-shun, YANG Min, HU Bin. Nonlinear semi-parametric modeling mothed based on GA-ANN. J4, 2011, 45(6): 977-983.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2011.06.003        https://www.zjujournals.com/eng/CN/Y2011/V45/I6/977

[1] ENGLE R J. Semiparametric estimates of ralation between weather and electricity sale[J]. Journal of the American Statistical Association, 1986, 81(394): 310-320.
[2] HECKMAN S. Kernel smoothing in particial linear models[J]. Journal of the Royal Statistical Society, 1988,50(3): 413-436.
[3] 高集体,洪圣岩,梁华.半参数回归模型研究的若干进展[J].应用概率统计,1994,10(1): 95-103.
GAO Jiti, HONG Shengyan, LIANG Hua. Some improvements of the investigation for semiparametric regression models[J]. Chinese Journal of Applied Probability and Statisties, 1994,10(1): 95-103.
[4] 柴根象,孙平,蒋泽云.半参数回归模型的二阶段估计[J].应用数学学报,1995,16(1): 353-363.
CHAI Genxiang, SUN Ping, JIANG Zeyun. Two stage estimator in semiparametric model[J]. Acta Mathematicae Applicatae Sinica , 1995,16(1): 353-363.
[5] 张松林,张昆.非参数模型最小二乘核估计参数分量的统计性质[J].大地测量与地球动力学,2007,17(1): 55-58.
ZHANG Songlin, ZHANG Kun. Statistic characteristics of parametric components of leastsquare Kernel estimator of nonlinear semiparametric model[J]. Journal of Geodesy and Geodynamics, 2007,17(1): 55-58.
[6] 张昆,张松林.非线性半参数模型最小二乘核估计的直接解法[J].大地测量与地球动力学,2006,16(2): 92-94.
ZHANG Kun, ZHANG Songlin. Direct estimation formulae of leastsquare Kernel estimator of nonlinear semiparametric models[J]. Journal of Geodesy and Geodynamics, 2007,17(1): 55-58.
[7] 冯三营,李高荣.非线性半参数回归模型的最大经验似然估计[J].应用数学,2009,22(1): 101-110.
FENG Sanying, LI Gaorong. Maximum empirical likelihood estimator in nonlinear semiparametric regression models[J]. Mathematica Applicata,2009,22(1): 101-110.
[8] 王志忠,郭兴翠.非线性半参数模型的虚拟观测法[J].数学理论与应用,2007,27(2): 60-63.
WANG Zhizhong, GUO Xingcui, ZHOU Yuna. Quasi observation approach of nonlinear semiparametric mode[J]. Mathematical Theory and Applications, 2007, 27(2): 60-63.
[9] 李中凯,谭建荣,冯毅雄.基于多目标遗传算法的可调节变量产品族优化[J].浙江大学学报:工学版,2008,42(6): 1015-1020.
LI Zhongkai, TAN Jianrong, FENG Yixiong. Efficiency optimization control of group pump based on adaptive genetic algorithm[J]. Journal of Zhejiang University: Engineering Science, 2008,42(6): 1015-1020.
[10] 邬莉娜,汪雄海.基于自适应遗传算法的机泵群效率优化控制[J].浙江大学学报:工学版,2008,42(11): 1910-1914.
WU Lina, WANG Xionghai. Efficiency optimization control of group pump based on adaptive genetic algorithm[J]. Journal of Zhejiang University: Engineering Science, 2008, 42(11): 1910-1914.
[11] MCCAULEY K B, MACGREGOR J F. Online Inference of polymer properties in an industrial polyethylene reactor[J]. AIChE Journal, 1991,37(6): 825-835.

[1] 徐贵斌, 周东华. 基于在线学习神经网络的状态依赖型故障预测[J]. J4, 2010, 44(7): 1251-1254.
[2] 杜文莉, 王坤, 钱锋. 基于特征空间降维的溶剂脱水分离过程监控[J]. J4, 2010, 44(7): 1255-1259.
[3] 林勇, 周晓军, 杨先勇, 等. 基于双谱识别和人工免疫网络的智能故障检测[J]. J4, 2009, 43(10): 1777-1782.