Please wait a minute...
浙江大学学报(工学版)
电信技术     
基于多谱融合的植被环境中障碍物检测
王盛,项志宇
浙江大学 信息与电子工程学系,浙江 杭州,310027
Detecting obstacles in vegetation by multi spectral fusion
WANG Sheng,XIANG Zhi yu
Department of Information Science and Electronic Engineer, Zhejiang University, Hangzhou 310027, China
 全文: PDF(2824 KB)   HTML
摘要:

针对植被环境下的障碍物检测,提出联合三维点云分布特征和多光谱特征的检测方法.构建彩色相机、红外相机和三维激光雷达构成的多传感器系统.通过相机与三维激光雷达联合标定的方法,实现三维点云数据与图像像素信息的融合.基于多光谱数据分析,在归一化植被差分指数(NDVI)的基础上,提出新的红外彩色通道联合光谱特征,结合混合高斯模型对植被和非植被进行分类.在实验中发现光照条件的变化和地面点的干扰对结果有很大影响.通过加入红外光强归一化和特征信息加权之后检测效果得到了明显改善.在多个典型的场景中进行实验,结果表明,检测效果比基于NDVI的方法好.

Abstract:

A detection method that integrates distribution features of threedimensional point cloud and multispectral signature was proposed,  for the obstacle detection in vegetationcovered environment. A multisensor system consisting of color camera, infrared camera and threedimensional LIDAR was built. The integration of threedimensional point cloud data and image pixels was achieved,through a joint calibration method by camera and threedimensional LIDAR. A new spectral signature of IRcolor joint channel was proposed and used to classify vegetation and nonvegetation objects together with Gaussian Mixture Model,based on multispectrum data analysis and normalized difference vegetation index (NDVI).  Experimental results showed that the changes of lighting conditions and the interference of ground points had a significant impact on the results. the detection effect was significantly improved, by adding normalized light intensity of infrared light and weighted feature information, Experiments were conducted  in several typical scenarios. Results showed the detection effect by the method was better than the one by NDVI.

出版日期: 2015-11-01
:  TP 391  
基金资助:

国家自然科学基金资助项目(NSF 61571390).

通讯作者: 项志宇,男,副教授.ORCID:0000000233297037.     E-mail: xiangzy@zju.edu.cn
作者简介: 王盛(1990-),男,硕士生,主要从事机器视觉研究.ORCID:0000000160515557.Email:21231065@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

王盛,项志宇. 基于多谱融合的植被环境中障碍物检测[J]. 浙江大学学报(工学版), 10.3785/j.issn.1008973X.2015.11.026.

WANG Sheng,XIANG Zhi yu. Detecting obstacles in vegetation by multi spectral fusion. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 10.3785/j.issn.1008973X.2015.11.026.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008973X.2015.11.026        http://www.zjujournals.com/eng/CN/Y2015/V49/I11/2223

[1] MACEDO J, MANDUCHI R, MATTHIES L. Ladarbased discrimination of grass from obstacles for autonomous navigation[C]∥ ISER 2000, Hawaii, USA:Springer Berlin Heidelberg, 2000, 271: 111-120.
[2] MANDUCHI R, CASTANO A, TALUKDER A, et al. Obstacle detection and terrain classification for autonomous offroad navigation[J]. Autonomous Robots, 2005, 18(1): 81-102.
[3] HEBERT M, VANDAPEL N. Terrain classification techniques from ladar data for autonomous navigation[C]∥ Collaborative Technology Alliance Workshop. Adelphi, Maryland, USA: Army Research Laboratory, 2003: 4-11.
[4] VANDAPEL N, HUBER D F, KAPURIA A, et al. Natural terrain classification using 3d ladar data[C]∥ Proc. of IEEE International Conference on Robotics and Automation (ICRA’04).New Orleans, LA, USA: IEEE Press, 2004: 5117-5122.
[5] RICHARDSON A J, WIEGAND C L. Distinguishing vegetation from soil background information [J]. Photogrammetric Engineering and Remote Sensing, 1977, 43(12):15411552.
[6] HUETE A R. A soil adjusted vegetation index (SAVI) [J]. Remote Sensing of Environment, 1988, 25: 295-309.
[7] DIMA C S, VANDAPEL N, HEBERT M. Classifier fusion for outdoor obstacle detection[C]∥ Proc. of IEEE International Conference on Robotics and Automation (ICRA’04). New Orleans, LA, USA: IEEE Press, 2004, 1: 665-671.
[8] BRADLEY D, THAYER S, STENTZ A T, et al. Vegetation detection for mobile robot navigation[R]. Pittsburgh, USA: Carnegie Mellon University, Robotics Institute, February 2004.
[9] BRADLEY D M, UNNIKRISHNAN R, BAGNELL J. Vegetation detection for driving in complex environments[C]∥ Proc. of IEEE International Conference on Robotics and Automation (ICRA’07). Roma, Italy: IEEE Press, 2007: 503-508.
[10] NGUYEN D V, KUHNERT L, SCHLEMPER J, et al. Terrain classification based on structure for autonomous navigation in complex environments[C]∥ Proc. of the 3rd International Conference on Communications and Electronics (ICCE). Nha Trang: IEEE Press, 2010: 163-168.
[11] NGUYEN D V, KUHNERT L, JIANG T, et al. Vegetation detection for outdoor automobile guidance[C]∥ Proc. of International Conference on Industrial Technology (ICIT). Auburn, AL: IEEE Press, 2011: 358-364.
[12] UNNIKRISHNAN R, HEBERT M. Fast Extrinsic Calibration of a Laser Rangefinder to a Camera[R]. Pittsburgh, USA: Carnegie Mellon University, Robotics Institute, July 2005.
[13] SHULL C A. A spectrophotometric study of the reflection of light from leaf surfaces[J]. Botanical Gazette, 1929, 87(5): 583-607.
[14] CLARK R N, SWAYZE G A, LIVO K E, et al. Imaging spectroscopy: Earth and planetary remote sensing with the USGS Tetracorder and expert systems[J]. Journal of Geophysical Research: Planets, 2003, 108(12): 5131.
[15] UNSALAN C, BOYER K L, Linearized vegetation indices based on a formal statistical framework[J]. IEEE Trans. on Geoscience and Remote Sensing, 2004, 42(7): 1575-1585.
[16] KREIGLER F J, MALILA W A, NALEPKA R F, et al. Preprocessing transformations and their effects on multispectral recognition [C]∥ Proc. of the Sixth International Symposium on Remote Sensing of Environment. Ann Arbor, Michigan, USA, Environmental Research Institute of Michigan, 1969: 97-131.
[17] BILMES J A. A gentle tutorial of the EM algorithm and its application to parameter estimation for Gaussian mixture and hidden Markov models[R]. California, USA: University of Berkeley, International Computer Science Institute, 1997.
[18] NAVARROSERMENT L E, MERTZ C, HEBERT M. Pedestrian detection and tracking using threedimensional ladar data[J]. The International Journal of Robotics Research, 2010, 29(12): 1516-1528.

[1] 何雪军, 王进, 陆国栋, 刘振宇, 陈立, 金晶. 基于三角网切片及碰撞检测的工业机器人三维头像雕刻[J]. 浙江大学学报(工学版), 2017, 51(6): 1104-1110.
[2] 王桦, 韩同阳, 周可. 公安情报中基于关键图谱的群体发现算法[J]. 浙江大学学报(工学版), 2017, 51(6): 1173-1180.
[3] 尤海辉, 马增益, 唐义军, 王月兰, 郑林, 俞钟, 吉澄军. 循环流化床入炉垃圾热值软测量[J]. 浙江大学学报(工学版), 2017, 51(6): 1163-1172.
[4] 毕晓君, 王佳荟. 基于混合学习策略的教与学优化算法[J]. 浙江大学学报(工学版), 2017, 51(5): 1024-1031.
[5] 黄正宇, 蒋鑫龙, 刘军发, 陈益强, 谷洋. 基于融合特征的半监督流形约束定位方法[J]. 浙江大学学报(工学版), 2017, 51(4): 655-662.
[6] 蒋鑫龙, 陈益强, 刘军发, 忽丽莎, 沈建飞. 面向自闭症患者社交距离认知的可穿戴系统[J]. 浙江大学学报(工学版), 2017, 51(4): 637-647.
[7] 穆晶晶, 赵昕玥, 何再兴, 张树有. 基于凹凸变换与圆周拟合的重叠气泡轮廓重构[J]. 浙江大学学报(工学版), 2017, 51(4): 714-721.
[8] 王亮, 於志文, 郭斌. 基于双层多粒度知识发现的移动轨迹预测模型[J]. 浙江大学学报(工学版), 2017, 51(4): 669-674.
[9] 廖苗, 赵于前, 曾业战, 黄忠朝, 张丙奎, 邹北骥. 基于支持向量机和椭圆拟合的细胞图像自动分割[J]. 浙江大学学报(工学版), 2017, 51(4): 722-728.
[10] 戴彩艳, 陈崚, 李斌, 陈伯伦. 复杂网络中的抽样链接预测[J]. 浙江大学学报(工学版), 2017, 51(3): 554-561.
[11] 刘磊, 杨鹏, 刘作军. 采用多核相关向量机的人体步态识别[J]. 浙江大学学报(工学版), 2017, 51(3): 562-571.
[12] 郭梦丽, 达飞鹏, 邓星, 盖绍彦. 基于关键点和局部特征的三维人脸识别[J]. 浙江大学学报(工学版), 2017, 51(3): 584-589.
[13] 张亚楠, 陈德运, 王莹洁, 刘宇鹏. 基于增量图形模式匹配的动态冷启动推荐方法[J]. 浙江大学学报(工学版), 2017, 51(2): 408-415.
[14] 王海军, 葛红娟, 张圣燕. 基于核协同表示的快速目标跟踪算法[J]. 浙江大学学报(工学版), 2017, 51(2): 399-407.
[15] 刘宇鹏, 乔秀明, 赵石磊, 马春光. 统计机器翻译中大规模特征的深度融合[J]. 浙江大学学报(工学版), 2017, 51(1): 46-56.