Please wait a minute...
浙江大学学报(工学版)
机械工程     
粗糙表面形貌对电蚀的影响
汪久根1,冯兰兰1,李阳2
1.浙江大学 机械工程学院,浙江 杭州 310027;2.中国矿业大学 机电工程学院,江苏 徐州 221116
Influences of surface topography on electrical pitting
WANG Jiu gen1,FENG Lan lan1,LI Yang2
1.Department of Mechanical Engineering,Zhejiang University,Hangzhou 310027,China;2.School of Mechatronic Engineering,China University of Mining and Technology,Xuzhou 221116,China
 全文: PDF(1257 KB)   HTML
摘要:
以名义线接触副轴承和齿轮为研究对象,用分形方法模拟三维粗糙表面,建立由一个粗糙表面与一个光滑刚性平面接触的简单模型和由2个粗糙表面接触的复杂模型,建立粗糙表面的矩形斑点接触电阻计算模型和电流密度计算模型,从接触电阻和电流密度2个角度来考虑粗糙表面形貌对电蚀的影响.分析接触载荷和分形参数对实际接触面积、接触电阻和电流密度的影响;在恒定载荷下,研究接触电阻和电流密度与粗糙度之间的定量关系.结果表明,从接触电阻或电流密度方面,增加轴承和齿轮表面间的接触载荷和减小表面粗糙度可以防止电蚀的发生,因此接触电阻和电流密度一样可以用来作为电蚀发生的判据.在实际应用中,主动设计最佳的接触载荷大小以及最佳的表面粗糙度可以防止电蚀的发生,并且在研究粗糙表面接触问题时应采用复杂的接触模型.所提出的计算方法可以分析表面电蚀失效.
Abstract:
For the bearings and gears in nominal line contacts, the three dimensional rough surfaces of elements were simulated with two fractal models, a simple contact model with the contact between a rough  surface and a smooth rigid plane, and a complicated contact model with the contact of two rough surfaces were established. The calculation models of contact resistance with rectangular spots and current density of rough surfaces were established. The influences of surface topography on electrical pitting were analyzed from the point of contact resistance and current density. The influences of contact load and fractal parameters on the real contact area, contact resistance and current density were analyzed.  And the quantitative relationship between contact resistance and surface roughness as well as that between current density and surface roughness were studied under constant load. The results demonstrate that, either from the perspective of contact resistance or that of current density, the increase of the contact load and the reduction of the surface roughness of bearings and gears can prevent  electrical
pitting. Therefore, contact resistance can be used as an evaluation criterion of  electrical pitting as well as current density. In practical applications, the active design of optimal contact load and optimal surface roughness can prevent electrical pitting, and the complicated model should be used in the study of contact problems between rough surfaces. The proposed method can analyze the surface failures of electrical pitting.
出版日期: 2015-11-01
:  TH 117  
基金资助:
国家自然科学基金资助项目(51375436);国家“863”高技术研究发展计划资助项目(2015AA043002).
作者简介: 汪久根(1963-),男,教授,博导,从事摩擦学与仿生设计.ORCID:0000 0001 8720 1005.E-mail:me_jg@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

汪久根,冯兰兰,李阳. 粗糙表面形貌对电蚀的影响[J]. 浙江大学学报(工学版), 10.3785/j.issn.1008 973X.2015.11.001.

WANG Jiu gen,FENG Lan lan,LI Yang. Influences of surface topography on electrical pitting. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 10.3785/j.issn.1008 973X.2015.11.001.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008 973X.2015.11.001        http://www.zjujournals.com/eng/CN/Y2015/V49/I11/2025

[1] 马静,陈伟,刘奎,等. 客车轴承电蚀原因分析[J]. 铁道车辆,2013,51(11):39-41.
MA Jing,CHEN Wei,LIU Kui,et al. Analysis of causes to galvanic corrosion of bearings for passenger cars [J]. Rolling Stock,2013,51(11):39-41.
[2] 邢力军. 电气化区段运行的铁道客车轴承电蚀原因探讨[J]. 铁道车辆,2007,45(3):38-39.
XING Li jun. Discussion of causes to bearings electrolysis of railway passenger cars operating in electrified section [J]. Rolling Stock,2007,45(3):38-39.
[3] 江利国,徐华伟. 韶山型电力机车轴箱轴承电蚀原因分析及预防措施[J]. 价值工程,2012,31(26):17-18.
JIANG Li guo,XU Hua wei. Shaoshan Type electric locomotive axle box bearings electrical erosion cause analysis and prevention measures[J]. Value Engineering,2012,31(26):17-18.
[4] 胡高举,韦云隆,张光辉,等. 齿轮电蚀现象的研究进展[J]. 重庆大学学报:自然科学版,2000,23(6):19-22.
HU Gao ju,WEI Yun long,ZHANG Guang hui, et al. The Study evolution of gear electric erosion phenomenon[J]. Journal of Chongqing University:Natural Science Edition,2000,23(6):19-22.
[5] 贺泽龙,韦云隆,张光辉,等. 齿轮齿面电蚀机理[J]. 重庆大学学报:自然科学版,2000,23(6):27-30.
HE Ze long,WEI Yun long,ZHANG Guang hui,et al. The Study on the electric erosion mechanism of the gear surface [J]. Journal of Chongqing University:Natural Science Edition, 2000,23(6):27-30.
[6] KAKISHIMA H,KIGAWA T,YAMAMOTO T. Simulation of electrical pitting on sliding bearings for railway freight cars   Influence of electrically conductive particles size, amount of current and types of lubricating oil [J]. Journal of Japanese Society of Tribologists, 2008,53(12):819-826.
[7] NOGUCHI S,AKAMATSU H,KORENAGA A. A study of electrical pitting for small ball bearings (Part 1)   Electrical pitting outbreak limit electric current density of ball bearing 608 in case of the direct current voltage [J]. Journal of Japanese Society of Tribologists,2007,52(8):622-628.
[8] NOGUCHI S,KAKINUMA S,SHIRAKI T,et al. A study of electrical pitting for small ball bearings (Part 4) experimental consideration about electrical pitting prevention [J]. Journal of Japanese Society of Tribologists,2010,55(8):579-584.
[9] NOGUCHI S,FUKUDA E,KANADA T. Effect of oil film parameter on vibration acceleration and electrical pitting of small ball bearing [J]. Tribology Online,2012,7(1):33-40.
[10] RAADNUI S,KLEESUWAN S. Electrical pitting wear debris analysis of grease lubricated rolling element bearings [J]. Wear,2011,271(9/10):1707-1718.
[11] RAADNUI S,KLEESUWAN S. Electrical pitting of grease lubricated rolling and sliding bearings: A comparative study [C] ∥Journal of Physics: Conference Series. Huddersfield,United kingdom:Institute of Physics Publishing,2012:012041.
[12] MANDELBROT B B. The fractal geometry of nature[M]. New York: W H Freedom and company,1982:147151.
[13] YUAN C Q,LI J,YAN X P,et al. The use of the fractal description to characterize engineering surfaces and wear particles [J]. Wear,2003,255(1):315-326.
[14] YAN W,KOMVOPOULOS K. Contact analysis of elastic plastic fractal surfaces[J]. Journal of Applied Physics,1998,84(7):3617-3624.
[15] 冯兰兰,汪久根. 齿轮齿面的分形模拟[J]. 机械传动,2014,38(2):49-53.
FENG Lan lan,WANG Jiu gen. Fractal Simulation of Gear Teeth Surface[J]. Journal of Mechanical Transmission,2014,38(2):49-53.
[16] JACKSON R L,STREATOR J L. A multi scale model for contact between rough surfaces[J]. Wear,2006,261(11):1337-1347.
[17] BOWDEN F P,TABOR D. The Friction and Lubrication of Solids[M]. Oxford:the Clarendon Press, 2001:10-16.
[18] CIAVARELLA M,MUROLO G,DEMELIO G,et al. Elastic contact stiffness and contact resistance for the Weierstrass profile [J]. Journal of the mechanics and physics of solids,2004,52(6):1247-1265.
[19] AICHI H,TAHARA N. Analysis on the constriction resistance of the electric contact by the contact model using the electrolyte bath [C] ∥Proceedings of 20th International Conference on Electrical Contacts. Nagoya, Japan:1994:17.
[20] GREENWOOD J A,WILLIAMSON J. Electrical conduction in solids. II. Theory of temperature dependent conductors [J]. Proceedings of the Royal Society of London, Series A, Mathematical and Physical Sciences,1958,246(1244):13-31.
[21] 葛世荣,朱华. 摩擦学的分形[M]. 第1版. 北京:机械工业出版社,2005:112-122.
[1] 赵飞, 杨帅, 吴俊, 吴淳杰, 吴大转. 基于Fluent的压力能交换器端面液膜支撑机理分析[J]. 浙江大学学报(工学版), 2014, 48(8): 1528-1533.
[2] 孟德远, 陶国良, 刘昊, 陈剑锋. 基于LuGre模型的气缸摩擦力特性研究[J]. J4, 2012, 46(6): 1027-1033.