Please wait a minute...
浙江大学学报(工学版)
机械工程     
飞机蒙皮切边的螺旋铣削方法
董辉跃1,朱灵盛1, 章明1, 李少波2,罗水均2
1. 浙江大学 机械工程学院,浙江省先进制造技术重点研究实验室, 浙江 杭州 310027; 2. 中航成飞民用飞机有限责任公司, 四川 成都 610073
Orbital milling method of aircraft skins trimming
DONG Hui yue1, ZHU Ling sheng1, ZHANG Ming1, LI Shao bo2, LUO Shui jun2
1. Key Laboratory of Advanced Manufacturing Technology of Zhejiang Province, College of Mechanical Engineering,
Zhejiang University, Hangzhou 310027, China;2. Chengdu Civil Aircraft Company Limited, Chengdu 610073, China
 全文: PDF(2464 KB)   HTML
摘要:
为实现飞机蒙皮的自动化切边, 提出基于工业机器人的螺旋铣削方法. 针对螺旋铣削加工参数进行正交试验研究, 建立周向铣削力和表面粗糙度的经验模型, 并对刀具自转转速、公转转速、每公转进给量、每齿进给量及铣削深度5个加工参数进行极差分析, 利用相对灵敏度模型确定每公转进给量是影响周向铣削力和表面粗糙度最为显著的因素. 综合考虑加工质量与效率要求, 优选加工参数并进行试验验证. 实验结果表明: 机器人铣削蒙皮试验系统加工性能稳定, 加工效率达48 mm/min, 轮廓精度达±0.15 mm, 表面粗糙度在4 μm以内, 切边无毛刺, 实现了高效精确的蒙皮自动化切边, 为飞机蒙皮切边提供了一种新的方法.
Abstract:
An orbital milling method based on industrial robot was presented to trim aircraft skins automatically. First, the orbital milling parameters were studied through orthogonal experiment design  the empirical models of circumferential milling force and surface roughness were established. Then, the spindle speed, orbital speed, feed rate per revolution, feed rage per tooth the depth of cut were studied by range analysis. Relative sensitivity model shows that the feed rate per revolution has the most significant effect on the circumferential milling force and surface roughness. Considering the requirements of both processing quality and efficiency, the optimal set of process parameters was obtained verified by experimen. Results in dicate that the experiment system of robot milling skin works steadily and reliably, the machining efficiency is 48 mm/min, the contour accuracy is ±0.15 mm, and the roughness is less than 4 μm, even without burr. The proposed system provides a new automatic method for aircraft skins trimming.
出版日期: 2015-11-01
:  TH 166  
基金资助:

中央高校基本科研业务费专项资金资助项目(2014FZA4003);民用飞机专项科研资助项目(MJZ G 2011 07).

通讯作者: 章明(1957-), 男, 工程师.ORCID:0000 0002 6533 6635.     E-mail: zhmg@zju.edu.cn
作者简介: 董辉跃(1974-), 男, 研究员, 从事机飞机数字化装配中现场加工及航空难加工材料切削研究. ORCID:0000 0003 4107 2150.E-mail: donghuiyue@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

董辉跃,朱灵盛, 章明, 李少波,罗水均. 飞机蒙皮切边的螺旋铣削方法[J]. 浙江大学学报(工学版), 10.3785/j.issn.1008 973X.2015.11.002.

DONG Hui yue, ZHU Ling sheng, ZHANG Ming, LI Shao bo, LUO Shui jun. Orbital milling method of aircraft skins trimming. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 10.3785/j.issn.1008 973X.2015.11.002.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008 973X.2015.11.002        http://www.zjujournals.com/eng/CN/Y2015/V49/I11/2033

[1] 胡福文, 李东升, 李小强, 等. 蒙皮柔性夹持数控切边的工艺设计方法[J]. 北京航空航天大学学报, 2012, 38(5): 675-680.
HU Fu wen, LI Dong sheng, LI Xiao qiang, et al. Process planning of aircraft skins NC trimming based on reconfigurable fixture [J]. Journal of Beijing University of Aeronautics and Astronautics, 2012, 38(5): 675-680.
[2] 李东升, 罗红宇, 王丽丽, 等. 飞机蒙皮的数字化成形制造技术[J]. 塑性工程学报, 2009, 16(1):82-87.
LI Dong sheng, LUO Hong yu, WANG Li li, et al. Numerical forming technology of the aircraft skin [J]. Journal of Plasticity Engineering, 2009, 16(1): 82-87.
[3] 胡福文, 李东升, 李小强, 等. 面向飞机蒙皮柔性夹持数控切边的定位仿真系统及应用[J].计算机集成制造系统. 2012, 18(5): 993-998.
HU Fu wen, LI Dong sheng, Li Xiao qiang, et al. Locating simulation for aircraft skins NC trimming based on flexible holding fixture [J]. Computer Integrated Manufacturing Systems, 2012, 18(5): 993-998.
[4] BRUCE M. Robotics seeks its role in aerospace [J]. Manufacturing Engineering, 2007, 139(4): AAC1-AAC4.
[5] 秦瑞祥, 邹冀华. 工业机器人在飞机数字化装配中的应用[J]. 航空制造技术, 2010, 23: 104-108.
QIN Rui xiang, ZOU Yi hua. Application of industrial robot in aircraft digital assembly [J]. Aeronautical Manufacturing Technology, 2010, 23: 104-108.
[6] PAN Zeng xi, ZHANG Hui, ZHU Zhen qi, et al. Chatter analysis of robotic machining process [J]. Journal of Materials Processing Technology, 2006, 173: 301-309.
[7] 刘楚辉, 姚宝国, 柯映林. 工业机器人切削加工离线编程研究[J]. 浙江大学学报:工学版, 2010, 44(3): 426-431.
LIU Chu hui, YAO Bao guo, KE Ying lin. Study on off line programming of industrial robot for cutting process [J]. Journal of Zhejiang University: Engineering Science, 2010, 44(3): 426-431.
[8] JASON M, MARTIN D, CLAUDE P. CAM based planning, programming and execution of large scale machining operations by a robot mounted gantry system [J]. SAE International, 2011(01)26-51.
[9] MATSUOKA S, SHIMIZU K, YAMAZAKI N, et al. High speed end milling of an articulated robot and its characteristics [J]. Journal of Materials Processing Technology, 1999, 95: 83-89.
[10] 陈魁. 试验设计与分析[M]. 北京: 清华大学出版社, 2006: 254-256.
[11] 田荣鑫, 姚倡锋, 黄新春, 等. 面向加工表面粗糙度的钛合金高速铣削工艺参数区间敏感性及优选[J]. 航空学报, 2010, 31(12): 2464-2470.
TIAN Rong xin, YAO Chang feng, Huang Xin chun, et al. Process parameter interval sensitivity and optimization of machined surface roughness for high speed milling of titanium alloys [J]. Acta Aeronautica Et Astronautica Sinica, 2010, 31(12): 2464-2470.
[1] 罗仕鉴, 董烨楠. 面向创意设计的器物知识分类研究[J]. 浙江大学学报(工学版), 2017, 51(1): 113-123.
[2] 王越, 苏宏业, 邵寒山, 卢山,谢磊. 需求与公用工程不确定的生产计划与调度集成[J]. 浙江大学学报(工学版), 2017, 51(1): 57-67.
[3] 文贤鹤, 周晓军, 杨辰龙. 云制造模式车辆试验服务平台构建方法[J]. 浙江大学学报(工学版), 2016, 50(12): 2254-2261.
[4] 刘征宏, 谢庆生, 李少波, 林丽. 基于潜在语义分析和感性工学的用户需求匹配[J]. 浙江大学学报(工学版), 2016, 50(2): 224-233.
[5] 朱上上,罗仕鉴. 产品设计中基于设计符号学的文物元素再造[J]. J4, 2013, 47(11): 2065-2070.
[6] 伍晓榕,裘乐淼,张树有,孙良峰,郭传龙. 模糊语境下的复杂系统关联FMEA方法[J]. J4, 2013, 47(5): 782-789.
[7] 萨日娜, 张树有. 复杂产品设计方案联合变权群决策方法[J]. J4, 2013, 47(4): 711-719.
[8] 张卫,潘晓弘,王正肖,田景红,吴鹏程. 基于信息熵免疫优化的制造服务开发策略[J]. J4, 2011, 45(11): 1908-1912.
[9] 邱清盈, 张惠, 冯培恩. 专利知识辅助产品创新的方法[J]. J4, 2011, 45(2): 228-233.
[10] 刘江, 陈芨熙, 顾新建, 等. 技术路线图导向的知识网络模型[J]. J4, 2009, 43(12): 2218-2224.
[11] 白翱, 唐任仲, 王志国, 等. 离散制造业射频识别技术导入的多层决策模型[J]. J4, 2009, 43(12): 2196-2202.
[12] 徐河杭, 顾新建, 祁国宁, 等. 企业协同专利分析平台[J]. J4, 2009, 43(10): 1853-1857.