电信技术 |
|
|
|
|
自编码网络短文本流形表示方法 |
魏超, 罗森林, 张竞, 潘丽敏 |
北京理工大学 信息与电子学院,北京 100081 |
|
Short text manifold representation based on AutoEncoder network |
WEI Chao, LUO Sen-lin, ZHANG Jing, PAN Li-min |
School of Information and Electronics, Beijing Institute of Technology, Beijing 100081, China |
[1] 杨杰明.文本分类中文本表示模型和特征选择算法研究[D].长春:吉林大学, 2013.
YANG Jie-ming. The research of text representation and feature selection in text categorization [D]. Changchun: Jilin University, 2013.
[2] 王锦,王会珍,张俐.基于维基百科类别的文本特征表示[J].中文信息学报,2011,25(2): 27-31.
WANG Jin, WANG Hui-zhen, ZHANG Li. Text Representation by the Wikipedia Category [J]. Journal of Chinese Information Processing, 2011, 25(2): 370-383.
[3] BANERJEE S, RAMANTHAN K, GUPTA A. Clustering short text using Wikipedia [C] ∥ Proceedings of the 30th International ACM SIGIR Conference on Research and Development in Information Retrieval. Amsterdam: ACM, 2007: 787-788.
[4] HU X, SUN N, ZHANG C, et al. Exploiting internal and external semantics for the cluster of short texts using word knowledge[C] ∥ Proceedings of the 18th ACM Conference on Information and Knowledge Management. Hong Kong: ACM, 2009: 919-928.
[5] 王蒙,林兰芬,王峰.基于伪相关反馈的短文本扩展与分类[J].浙江大学学报:工学版,2014, 48(10):1835-1842.
WANG Meng, LIN Lan-fen, WANG Feng. Short text expansion and classification based on pseudo-relevance feedback [J]. Journal of Zhejiang University: Engineering Science, 2014, 48(10): 1835-1842.
[6] RUDI L C, PAUL M B. The google similarity distance[J]. IEEE Transactions on Knowledge and Data Engineering, 2007. 19(3): 370-383.
[7] YANG Jie-ming, LIU Yuan-ning, LIU Zhen, et al. A new feature selection algorithm based on binomial hypothesis testing for spam filtering [J]. Knowledge-Based Systems, 2011, 24(6): 904-914.
[8] YANG Jieming, LIU Yuan-ning, ZHU Xiao-dong, etsal. A new feature selection based on comprehensive measurement both in inter-category and intra-category for text categorization [J]. Information Processing and Management, 2012, 48(4): 741-754.
[9] DEERWESTER S, DUMAIS S T, HARSHMAN R, et al. Indexing by Latent Semantic Analysis [J]. Journal of the American Society for Information Science, 1990, 41(6): 391-407.
[10] BLEI D M, ANDREW Y N, JORDAN Y M. Latent dirichlet allocation [J]. Journal of Machine Learning Research, J2003, 3: 993-102.
[11] KRISHNAN V, Shortcomings of latent models in supervised settings[C]. ∥ Proceedings of the SIGIR. Salvador: ACM, 2005: 625-626.
[12] HUH S, FIENBERG S E. Discriminative topic modeling based on manifold learning [J]. ACM Transactions on Knowledge Discovery from Data (TKDD), 2012, 5(4): 653-661.
[13] SEUNG H S ,LEE D D. The manifold ways of perception [J]. Science. 2000, 290(5500): 2268-2269.
[14] SILVA V D, TEBEBBAUM J B. Global versus local methods in nonlinear dimensionality reduction [C]∥ Neural Information Processing Systems 15 (NIPS′2002). Vancouver: MIT, 2003, 705-712.
[15] BENGIO Y, LAMBLIN P, POPOVICI D, et al. Greedy layerwise training of deep networks [C]∥ Advances in Neural Information Processing Systems 19 (NIPS′2006). Vancouver: MIT, 2007: 153-160.
[16] LECUN, Y, BOTTOU L, MULLER K R., et al. “Efficient backprop.” Neural networks: Tricks of the trade [J]. Springer Berlin Heidelberg, 2012, 7700: 9-48.
[17] CHANG C C, LIN C J. LIBSVM: a library for support vector machines [J]. ACM Transactions on Intelligent Systems and Technology (TIST), 2011, 2(3): 27. |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|