Please wait a minute...
浙江大学学报(工学版)  2023, Vol. 57 Issue (9): 1824-1831    DOI: 10.3785/j.issn.1008-973X.2023.09.014
机械工程、能源工程     
两性/阴离子复配湿润剂高压雾化降尘
杨永波1,2(),邢鹏超3,鲁轲1,2
1. 中煤科工集团重庆研究院有限公司,重庆 400037
2. 瓦斯灾害监控与应急技术国家重点实验室,重庆 400037
3. 重庆科技学院 安全工程学院,重庆 401331
High-pressure atomization dust reduction with amphoteric/anionic compound wetting agent
Yong-bo YANG1,2(),Peng-chao XING3,Ke LU1,2
1. China Coal Technology and Engineering Group Chongqing Research Institute, Chongqing 400037, China
2. State Key Laboratory of the Gas Disaster Detecting, Preventing and Emergency Controlling, Chongqing 400037, China
3. School of Safety Engineering, Chongqing University of Science and Technology, Chongqing 401331, China
 全文: PDF(1026 KB)   HTML
摘要:

为了解决综采工作面生产期间高浓度粉尘污染问题,在分析两性/阴离子复配湿润剂(AAC)与高压雾化降尘行为的基础上,采用正交试验法对十二烷基二甲基甜菜碱(BS-12)、仲烷基磺酸钠(SAS)进行复配研究. 通过粉尘沉降实验、溶液表面张力测试优选AAC的最佳湿润质量分数,依托浸泡吸液实验对比BS-12、SAS、AAC的湿润能力. 结合现场降尘实践,在8 MPa的高压雾化压力下和1.5 m/s的综采工作面风速下,对比矿井水、相同质量分数的BS-12、SAS与AAC的降尘效果. 结果表明, BS-12和SAS的最佳质量分数比为0.30%∶0.20%,当AAC的质量分数为0.20%时,粉尘沉降时间和溶液表面张力均趋近于最小值. 在浸泡初期,AAC、SAS、BS-12溶液中的煤体和矿井水中的煤体均处于快速吸液状态,浸泡时间为4 h,AAC溶液中的煤体吸液率较矿井水、BS-12、SAS溶液中的分别增加了87.83%、24.14%、16.76%;在浸泡后期,各溶液中的煤体吸液率均逐渐稳定. 综采工作面粉尘浓度先增加后减少,粉尘浓度最高点在采煤机下风侧10 m附近. AAC高压雾化降尘后,总粉尘和呼吸性粉尘的平均降尘效率分别为91.63%和91.59%,降尘效果较矿井水、BS-12、SAS的有显著提升.

关键词: 湿润剂正交复配湿润能力高压雾化降尘效率    
Abstract:

To resolve the problem of high concentration dust pollution during the production of fully-mechanized coal mining face, based on the analysis of the dust reduction behavior of amphoteric/anionic compound wetting agent (AAC) and high-pressure atomization, the dodecyl dimethyl betaine (BS-12) and the sodium sec-alkyl sulfonate (SAS) were compounding studied by orthogonal experiment. The optimum wetting mass fraction of AAC was selected by dust settling experiment and solution surface tension test, the wetting ability of BS-12, SAS, and AAC was compared by immersion aspiration test. Combined with the on-site dust reduction practice, the dust reduction effect of mine water, BS-12, SAS and AAC with the same mass fraction was compared under the high-pressure atomization pressure of 8 MPa and the wind speed of 1.5 m/s in the fully-mechanized coal mining face. Results showed that the optimum mass fraction ratio of BS-12 and SAS was 0.30% ∶ 0.20%, when the mass fraction of AAC was 0.20%, the dust settling time and the solution surface tension tended to be the minimum value. At the early stage of soaking, the coal bodies in AAC, SAS, BS-12 solution and mine water were in a fast absorption state, the soaking time was 4 h, the absorption rate of coal bodies in AAC solution increased by 87.83%, 24.14%, and 16.76% compared with that in mine water, BS-12, and SAS solution respectively; at the later stage of soaking, the absorption rate of coal bodies in each solution were gradually stabilized. The dust concentration in fully-mechanized coal mining face increases and then decreases, and the highest point of dust concentration is located near 10 m on the downwind side of the shearer. After AAC high-pressure atomization dust reduction, the average dust reduction efficiency of total dust and respirable dust was 91.63% and 91.59% respectively, and the dust reduction effect of AAC high-pressure atomization was significantly higher than that of mine water, BS-12 and SAS.

Key words: wetting agent    orthogonal combination    wetting ability    high-pressure atomization    efficiency of reducing dust
收稿日期: 2022-11-24 出版日期: 2023-10-16
CLC:  X 936  
基金资助: 国家重点研发计划项目(2017YFC0805202)
作者简介: 杨永波(1995—),男,研究实习员,硕士,从事煤岩粉尘灾害治理及煤岩采动力学研究. orcid.org/0000-0001-8944-4393.E-mail: yangyongbocqu@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
杨永波
邢鹏超
鲁轲

引用本文:

杨永波,邢鹏超,鲁轲. 两性/阴离子复配湿润剂高压雾化降尘[J]. 浙江大学学报(工学版), 2023, 57(9): 1824-1831.

Yong-bo YANG,Peng-chao XING,Ke LU. High-pressure atomization dust reduction with amphoteric/anionic compound wetting agent. Journal of ZheJiang University (Engineering Science), 2023, 57(9): 1824-1831.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2023.09.014        https://www.zjujournals.com/eng/CN/Y2023/V57/I9/1824

图 1  两性/阴离子复配湿润剂高压雾化降尘机制
图 2  沉降实验和浸泡吸液实验图
i wB/%
BS-12 SAS
1 0.05 0.05
2 0.10 0.10
3 0.20 0.20
4 0.30 0.30
表 1  正交试验的因素水平表
序号 wB/% tc/s
BS-12 SAS
1 0.05 0.05 39.00
2 0.05 0.10 38.00
3 0.05 0.20 33.00
4 0.05 0.30 37.00
5 0.10 0.05 34.00
6 0.10 0.10 35.00
7 0.10 0.20 31.00
8 0.10 0.30 38.00
9 0.20 0.05 35.00
10 0.20 0.10 34.00
11 0.20 0.20 31.00
12 0.20 0.30 33.00
13 0.30 0.05 37.00
14 0.30 0.10 29.00
15 0.30 0.20 31.00
16 0.30 0.30 33.00
表 2  正交复配方案及实验结果
试剂 $\overline K_{{\rm{C}}i} $/s RC/s
i=1 i=2 i=3 i=4
BS-12 36.75 34.50 33.25 32.50 4.25
SAS 36.25 34.00 31.50 35.25 4.75
表 3  实验结果的判别指标表
图 3  质量分数与粉尘沉降时间分布关系
图 4  质量分数与溶液表面张力分布关系
图 5  煤体浸泡时间与吸液率的分布
图 6  高压雾化降尘系统布置示意
图 7  湿润剂高压雾化降尘效果对比
1 WANG G F, XU Y X, REN H W, Intelligent and ecological coal mining as well as clean utilization technology in China: review and prospects [J]. International Journal of Mining Science and Technology, 2019, 29(2): 161-169.
2 陈贵, 王德明, 王和堂 大断面全岩巷综掘工作面泡沫降尘技术[J]. 煤炭学报, 2012, 37 (11): 1859- 1864
CHEN Gui, WANG De-ming, WANG He-tang The technology of controlling dust with foam for fully mechanized excavation face of large cross-section rock tunnel[J]. Journal of China Coal Society, 2012, 37 (11): 1859- 1864
3 NIE W, CAI X J, PENG H T, et al Distribution characteristics of an airflow–dust mixture and quantitative analysis of the dust absorption effect during tunnel sub-regional coal cutting[J]. Process Safety and Environmental Protection, 2022, 164: 319- 334
doi: 10.1016/j.psep.2022.05.068
4 蒋仲安, 姜兰, 陈举师. 露天矿潜孔打钻粉尘浓度分布规律数值模拟[J]. 深圳大学学报: 理工版, 2013, 30(3): 313-318.
JIANG Zhong-an, JIANG Lan, Chen Ju-shi, Numerical simulation of dust concentration distribution regularities of down-the-hole drilling in open-pit mine [J]. Journal of Shenzhen University: Science and Engineering, 2013, 30(3): 313-318.
5 梁运涛, 王泠峰, 苑春苗, 等 热板上煤尘着火及引燃煤粉尘云特性试验研究[J]. 中国矿业大学学报, 2022, 51 (5): 894- 900
LIANG Yun-tao, WANG Leng-feng, YUAN Chun-miao, et al Study of ignition of coal dust deposit by hot plate and its capability to ignite coal dust clouds[J]. Journal of China University of Mining and Technology, 2022, 51 (5): 894- 900
6 谢建林, 庞杰文, 菅洁, 等 综采工作面煤层注水降尘试验研究[J]. 中国安全科学学报, 2017, 27 (6): 151- 156
XIE Jian-lin, PENG Jie-wen, JIAN Jie, et al Experimental study on reducing dust at fully mechanized coal mining face by coal seam water injection[J]. China Safety Science Journal, 2017, 27 (6): 151- 156
7 胡江, 杨英兵, 苏志伟 超大采高综采工作面综合防尘技术及应用[J]. 煤炭科学技术, 2021, 49 (Suppl.2): 104- 109
HU Jiang, YANG Ying-bing, SU Zhi-wei Comprehensive dust prevention technology and application of comprehensive mechanized coal mining face with super large mining height[J]. Coal Science and Technology, 2021, 49 (Suppl.2): 104- 109
8 聂文, 刘阳昊, 马骁, 等 风流扰动支架架间高压喷雾降尘雾滴粒度实验[J]. 中国矿业大学学报, 2016, 45 (4): 670- 676
NIE Wen, LIU Yang-hao, MA Xiao, et al Experiment on the size of airflow disturbing dust removal droplet produced by high-pressure spray between supports[J]. Journal of China University of Mining and Technology, 2016, 45 (4): 670- 676
9 WANG H T, WU J L, DU Y H, et al Investigation on the atomization characteristics of a solid-cone spray for dust reduction at low and medium pressures[J]. Advanced Powder Technology, 2019, 30 (5): 903- 910
doi: 10.1016/j.apt.2019.02.004
10 尚治州. 大采高综采工作面呼吸带风流及粉尘运移数值模拟研究[D]. 西安: 西安科技大学, 2020.
SHANG Zhi-zhou. Numerical simulation research on the migration of airflow and dust in respiratory zone of fully mechanized mining face with large mining height [D]. Xi’an: Xi’an University of Technology, 2020.
11 李娇阳, 李凯琦 煤表面润湿性的影响因素[J]. 煤炭学报, 2016, 41 (Suppl.2): 448- 453
LI Jiao-yang, LI Kai-qi Influence factors of coal surface wettability[J]. Journal of China Coal Society, 2016, 41 (Suppl.2): 448- 453
12 杨静. 煤尘的润湿机理研究[D]. 青岛: 山东科技大学, 2008.
YANG Jing. Study on wettability mechanism of coal dust [D]. Qingdao: Shandong University of Science and Technology, 2008.
13 李明, 李梦娜, 白倩倩 湿润剂表面张力对硫化矿尘吸湿效果的影响[J]. 中国安全生产科学技术, 2017, 13 (7): 132- 136
LI Ming, LI Meng-na, BAI Qian-qian Influence of surface tension of humectant on moisture absorption effect of sulfide dust[J]. Journal of Safety Science and Technology, 2017, 13 (7): 132- 136
14 WANG H T, WEI X B, DU Y H, et al Effect of water-soluble polymers on the performance of dust-suppression foams: wettability, surface viscosity and stability[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 568: 92- 98
15 NI G H, SUN Q, XUN M, et al. Effect of NaCl-SDS compound solution on the wettability and functional groups of coal [J], Fuel, 2019, 257(1): 116077.
16 WANG X N, YUAN S J, JIANG B Y, et al Experimental investigation of the wetting ability of surfactants to coals dust based on physical chemistry characteristics of the different coal samples[J]. Advanced Powder Technology, 2019, 30 (8): 1696- 1708
doi: 10.1016/j.apt.2019.05.021
17 SU L, SUN J C, DING F, et al Effect of molecular structure on synergism in mixed zwitterionic/anionic surfactant system: an experimental and simulation study[J]. Journal of Molecular Liquids, 2021, 322: 114933
doi: 10.1016/j.molliq.2020.114933
18 吴姁, 夏瑜, 苑莲花, 等 分子动力学模拟阴离子/两性离子表面活性剂在油-水界面的分子行为及协同效应[J]. 石油学报(石油加工), 2021, 37 (4): 831- 839
WU Xu, XIA Yu, YUAN Lian-hua, et al Molecular dynamics simulations of the molecular behavior and synergistic effect of anionic/zwitterionic surfactants at oil-water interface[J]. Acta Petrolei Sinica (Petroleum Processing Section), 2021, 37 (4): 831- 839
19 刘伟, 张洋, 孟昭福, 等 两性-阴离子复配修饰对黄棕壤吸附Cd2+的影响 [J]. 中国环境科学, 2017, 37 (12): 4620- 4629
LIU Wei, ZHANG Yang, MENG Zhao-fu, et al Effect of amphoteric-anionic surfactant combined modification on Cd2+ adsorption of yellow brown soil [J]. China Environmental Science, 2017, 37 (12): 4620- 4629
20 吴超, 欧家才, 吴国珉. 阴离子型湿润剂与硫化矿尘的耦合性实验[J]. 中国矿业大学学报, 2006, 35(3): 323-328.
WU Chao, OU Jia-cai, WU Guo-min. Experiment on coupling of wet agents composed with anionic surfactants and dust of sulfide ores [J], Journal of China University of Mining and Technology, 2006, 35(3): 323-328.
21 郭永明. 高压喷雾降尘系统的关键技术研究[D]. 西安: 西安工业大学, 2016.
GUO Yong-ming. Research on key technology about high-pressure spray dust-setting system [D]. Xi’an: Xi’an Technological University, 2016.
22 阎丽婷. 基于表面活性剂胶束及聚合物胶束的纳米荧光探针用于CO检测[D]. 太原: 山西大学, 2021.
YAN Li-ting. Surfactant and polymeric micelle-based fluorescent nanoprobes for CO detection [D]. Taiyuan: Shanxi University, 2021.
23 张文庆. 煤层防尘注水复合湿润剂实验研究[D]. 淮南: 安徽理工大学, 2015.
ZHANG Wen-qing. Experimental study on compound wetting agent of dust prevention and water injection for coal seam [D]. Huainan: Anhui University of Science and Technology, 2015.
24 李孜军, 吴靓, 郭兆东, 等 两性—阴离子复配湿润剂对硫化矿尘润湿性的实验研究[J]. 中国安全生产科学技术, 2016, 12 (11): 41- 45
LI Zi-jun, WU Jing, GUO Zhao-dong, et al Experimental study on wettability of compound wetting agent with amphoteric and anionic wetting agents for dust of sulfide ores[J]. Journal of Safety Science and Technology, 2016, 12 (11): 41- 45
25 WANG H T, XUAN W F, ZHANG Z Z, et al Experimental investigation of the properties of dust suppressants after magnetic-field treatment and mechanism exploration[J]. Powder Technology, 2019, 342: 149- 155
doi: 10.1016/j.powtec.2018.09.099
26 XU G, CHEN Y P, EKSTEEN J, et al Surfactant-aided coal dust suppression: a review of evaluation methods and influencing factors[J]. Science of The Total Environment, 2018, 639: 1060- 1076
doi: 10.1016/j.scitotenv.2018.05.182
27 刘水文, 聂百胜 水对煤润湿的临界表面张力测算研究[J]. 煤炭科学技术, 2012, 40 (4): 64- 66+107
LIU Shui-wen, NIE Bai-sheng Study on measurement and calculation of critical surface tension of wetting coal with water[J]. Coal Science and Technology, 2012, 40 (4): 64- 66+107
28 王青松, 金龙哲, 孙金华 煤层注水过程分析和煤体润湿机理研究[J]. 安全与环境学报, 2004, 4 (1): 70- 73
WANG Qing-song, JIN Long-zhe, SUN Jin-hua A research on coal seam water infusion course and coal body wetness mechanism[J]. Journal of Safety and Environment, 2004, 4 (1): 70- 73
No related articles found!