Please wait a minute...
浙江大学学报(工学版)  2018, Vol. 52 Issue (3): 479-486    DOI: 10.3785/j.issn.1008-973X.2018.03.009
机械工程与力学     
NSVR硬岩隧道掘进机刀盘扭矩预测分析
王超, 龚国芳, 杨华勇, 周建军, 段理文, 张亚坤
浙江大学 流体动力与机电系统国家重点实验室, 浙江 杭州 310027
NSVR based predictive analysis of cutterhead torque for hard rock TBM
WANG Chao, GONG Guo-fang, YANG Hua-yong, ZHOU Jian-jun, DUAN Li-wen, ZHANG Ya-kun
State Key Laboratory of Fluid Power Transmission and Control, Zhejiang University, Hangzhou 310027, China
 全文: PDF(1545 KB)   HTML
摘要:

为了避免硬岩隧道掘进机(TBM)刀盘受困,提出TBM刀盘扭矩的非线性支持向量回归(NSVR)预测模型来指导TBM掘进施工.结合吉林引松供水工程现场掘进大量数据,研究TBM刀盘扭矩与掘进参数间的相关关系,得到刀盘扭矩与围岩类别、刀盘转速和推进速度具有明显相关关系:随着围岩强度由强到弱,推进速度对刀盘扭矩的影响逐渐变弱,刀盘转速对刀盘扭矩的影响逐渐变强.基于这种相关关系,建立刀盘扭矩NSVR预测模型,并将该模型应用于吉林引松隧道工程,对按1:1划分的19 854个训练样本和19 854个测试样本的刀盘扭矩进行预测.预测结果表明:训练样本集和测试样本集的平均相对预测误差分别为11.3%和12.9%,测试样本集中相对预测误差高于60%的有516个测试样本,占测试样本集总数的2.6%.各项数据表明,在给定刀盘转速、推进速度和围岩类别条件下,建立的刀盘扭矩NSVR预测模型具有较高的预测精度.

Abstract:

A nonlinear support vector regression (NSVR) model was proposed for the TBM's operation to avoid the hard rock tunnel boring machine (TBM) cutterhead's jam and. Based on abundant data collected from the construction site-Water Supply Project from Songhua River in Jilin province, relevant studies about the relationship between cutterhead torque and tunneling parameters were carried out. The results show obvious correlations:the softer the rock is, the less influence of advance speed on cutterhead torque will have, and cutterhead torque is more likely to be influenced by cutterhead rotate speed. According to the results, a NSVR model was established to calculate cutterhead torque. This model was then applied in the field to calculate cutterhead torque of 19 854 training samples and 19 854 test samples. The prediction results show that, the average relative prediction error of training sample sets and test sample sets were 11.3% and 12.9%. Among all the tested sample sets, there are 516 ones whose relative prediction error are higher than 60%, accounting for 2.6%. All the data demonstrates that the cutterhead torque NSVR model can afford a relatively higher accuracy with specified cutterhead rotate speed, advance speed and rock types.

收稿日期: 2017-04-07 出版日期: 2018-09-11
CLC:  TH137  
基金资助:

国家“973”重点基础研究发展规划资助项目(2015CB058103,2013CB035400);国家“863”高技术研究发展计划资助项目(2012AA041803,2012AA041802).

通讯作者: 龚国芳,男,教授,博导.orcid.org/0000-0001-9553-8783.     E-mail: gfgong@zju.edu.cn
作者简介: 王超(1992-),男,硕士生,从事隧道掘进装备及其智能决策研究.orcid.org/0000-0002-6854-0797.E-mail:idealismcw@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  

引用本文:

王超, 龚国芳, 杨华勇, 周建军, 段理文, 张亚坤. NSVR硬岩隧道掘进机刀盘扭矩预测分析[J]. 浙江大学学报(工学版), 2018, 52(3): 479-486.

WANG Chao, GONG Guo-fang, YANG Hua-yong, ZHOU Jian-jun, DUAN Li-wen, ZHANG Ya-kun. NSVR based predictive analysis of cutterhead torque for hard rock TBM. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2018, 52(3): 479-486.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2018.03.009        http://www.zjujournals.com/eng/CN/Y2018/V52/I3/479

[1] 刘统,龚国芳,彭左,等. 基于液压变压器的TBM刀盘混合驱动系统[J]. 浙江大学学报:工学版, 2016, 50(3):419-427. LIU Tong, GONG Guo-fang, PENG Zuo, et al. Hybrid cutterhead driving system for TBM based on hydraulic transformer[J]. Journal of Zhejiang University:Engineering Science, 2016, 50(3):419-427.
[2] 廖湘平,龚国芳,彭雄斌,等. 基于黏性耦合机理的TBM刀盘脱困特性[J], 浙江大学学报:工学版, 2016, 50(5):902-912. LIAO Xiang-ping, GONG Guo-fang, PENG Xiong-bin, et al. Jam breakout characteristic oftunnel boring machine based on hydro-viscous drive mechanism[J]. Journal of Zhejiang University:Engineering Science, 2016, 50(5):902-912.
[3] ROXBOROUGH F F, PHILLIPS H R. Rock excavation by disc cutter[J]. International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts, 1975, 12(12):361-366.
[4] ROSTAMI J, OZDEMIR L. A new model for performance prediction of hard rock TBMs[C]//Proceedings of the Rapid Excavation and Tunneling Conference. Boston:RETC, 1993:793-793.
[5] 张照煌,叶定海. 盘形滚刀破岩模型及其侧向力的计算[J]. 应用基础与工程科学学报, 2004, 12(3):294-299. ZHANG Zhao-huan, YE Ding-hai. The model of the disc cutter's broken-rock and the calculation of it's side-force[J]. Journal of Basic Science and Engineering, 2004, 12(3):294-299.
[6] 张照煌. 掘进机不同刀盘面上盘形滚刀工作时的侧滑分析[J]. 现代电力, 2003, 20(2):16-18. ZHANG Zhao-huang. Side-slip analysis of disc cutter on all kinds of cutterheads of full face rock tunnel boring machine[J]. Modern Electric Power, 2003, 20(2):16-18.
[7] 顾健健. 地应力下TBM盘形滚刀载荷特性及破岩参数匹配研究[D]. 湖南:中南大学,2013. GU Jian-jian. Mechanical characteristics of TBM disc cutter under the crustal stress and the parameters matching researches of rock-breaking[D]. Hunan:Central South University, 2013.
[8] 周思阳,亢一澜,苏翠侠,等. 基于力学分析的TBM掘进总推力预测模型研究[J]. 机械工程学报, 2016, 52(20):76-82. ZHOU Si-yang, KANG Yi-lan, SU Cui-xia, et al. Prediction of thrust force requirements for TBMs based on mechanical analysis[J]. Journal of Machanical Engineering, 2016, 52(20):76-82.
[9] 宋克志,杨华勋,安凯,等. 复杂岩石地层盾构掘进速率预测模型研究[J]. 公路交通科技, 2008, 25(11):105-108. SONG Ke-zhi, YANG Hua-xun, AN Kai, et al. Shield tunneling rate prediction model for complex rock stratum[J]. Journal of Highway and Transportation Research and Development, 2008, 25(11):105-108.
[10] 施虎,龚国芳,杨华勇,等. 盾构掘进土压平衡控制模型[J]. 煤炭学报, 2008, 33(3):343-346. SHI Hu, GONG Guo-fang, YANG Hua-yong, et al. Control model of earth pressure balance for shield tunneling[J]. Journal of China Coal Society, 2008, 33(3):343-346.
[11] ZHANG Q, QU C, KANG Y, et al. Identification and optimization of energy consumption by shield tunnel machines using a combined mechanical and regression analysis[J]. Tunnelling and Underground Space Technology. 2012, 28(1):350-354.
[12] ZHANG Q, SU C, QIN Q, et al. Modeling and prediction for the thrust on EPB TBMs under different geological conditions by considering mechanical decoupling[J]. Science China Technological Sciences, 2016, 59(9):1428-1434.
[13] YANG X, GONG G, YANG H, et al. A cutterhead energy-saving technique for shield tunneling machines based on load characteristic prediction[J]. Journal of Zhejiang University-SCIENCE A, 2015,16(5):418-426.
[14] SALIMI A, ROSTAMI J, MOORMANN C, et al. Application of non-linear regression analysis and artificial intelligence algorithms for performance prediction of hard rock TBMs[J]. Tunnelling and Underground Space Technology, 2016, 58(2):236-246.
[15] VAPNIK V, LERNER A. Pattern recognition using generalized portrait method[J]. Automation and Remote Control, 2008, 24(24):774-780.
[16] BOSER B E, GUYON I M, VAPNIK V N. A training algorithm for optimal margin classifiers[C]//Proceedings of Annual ACM Workshop on Computational Learning Theory, Pittsburgh:ACM, 1996:144-152.
[17] VAPNIK V N.The Nature of Statistical Learning Theory[M]. Berliner:Springer, 2000:988-999.
[18] SCHOLKOPF B, BURGES J C, SMOLA A J.Advances in Kernel Methods:Support Vector Machine[M]. Cambridge:MIT Press, 1998:1097-1105.
[19] PLATT J C.Fast training of support vector machines using sequential minimal optimization[M]. Cambridge:MIT Press, 1999:185-208.

[1] 黄梓亮, 欧阳小平, 赵天菲, 张建波, 周亮, 杨华勇. 飞机液压含气量检测系统特性[J]. 浙江大学学报(工学版), 2019, 53(1): 158-165.
[2] 魏建华, 孙春耕, 方锦辉, 王刚. 复合材料成形液压机自适应鲁棒运动控制[J]. 浙江大学学报(工学版), 2018, 52(5): 925-933.
[3] 钟麒, 张斌, 洪昊岑, 杨华勇. 基于电流反馈的高速开关阀3电压激励控制策略[J]. 浙江大学学报(工学版), 2018, 52(1): 8-15.
[4] 孙伟, 杜家楠, 王林涛, 马宏辉. 盾构管片拼装机电液系统高速-低冲击控制方法[J]. 浙江大学学报(工学版), 2017, 51(10): 1948-1958.
[5] 郭凡, 魏建华, 张强, 熊义. 基于级联控制器的液压机位移/压力复合控制[J]. 浙江大学学报(工学版), 2017, 51(10): 1937-1947.
[6] 师建鹏, 权龙, 张晓刚, 熊晓燕. 进出口独立复合控制挖掘机的动臂速度位置特性[J]. 浙江大学学报(工学版), 2017, 51(9): 1797-1807.
[7] 欧阳小平, 刘玉龙, 薛志全, 郭生荣, 周清和, 杨华勇. null[J]. 浙江大学学报(工学版), 2017, 51(7): 1361-1367.
[8] 任好玲, 谢海波, 杨华勇, 等. 单组元液压自由活塞发动机关键技术[J]. J4, 2009, 43(5): 872-876.