浙江大学学报(工学版)  2018, Vol. 52 Issue (1): 174-183    DOI: 10.3785/j.issn.1008-973X.2018.01.023
 电气工程

1. 浙江大学 电气工程学院, 浙江 杭州 310027;
2. 浙江大学 浙江省海洋可再生能源电气装备与 系统技术研究重点实验室, 浙江 杭州 310027;
3. 国网冀北电力有限公司电力科学研究院, 北京 100026
Comparison of numerical differentiation based damping sensitivity method
PAN Qiu-ping1,2, WANG Zhen1,2, GAN De-qiang1, XIE Huan3, LI Shang-yuan1
1. School of Electrical Engineering, Zhejiang University, Hangzhou 310027, China;
2. Zhejiang Provincial Key Laboratory of Electrical Equipment and Systems on Marine Renewable Energy, Zhejiang University, Hangzhou 310027, China;
3. Electric Power Research Institute of State Grid Jibei Electric Power Limited Company, Beijing 100026, China
 全文: PDF(1101 KB)   HTML

Abstract:

A numerical differentiation based damping sensitivity analysis (NDDS) method was presented in order to overcome the noneffectiveness of the analytic damping sensitivity method (ADS) based on the close-form sensitivity expression when the system model is inaccurate. The principle of three numerical differentiation methods, the difference quotient method, the interpolation method and the modified regularization method, were analyzed. The performance of all these methods were analyzed on two influence factors:the perturbation step setting and the measurement error. The modified regularization method can consider the measurement error of the eigenvalue and outperforms other two methods with better computation stability. The NDDS calculation procedure based on a commercial small signal analysis package for large-scale power grid was developed. The effectiveness of NDDS was validated by a simulation study on a real power system.

 CLC: TM712

 服务 把本文推荐给朋友 加入引用管理器 E-mail Alert 作者相关文章

#### 引用本文:

PAN Qiu-ping, WANG Zhen, GAN De-qiang, XIE Huan, LI Shang-yuan. Comparison of numerical differentiation based damping sensitivity method. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2018, 52(1): 174-183.

#### 链接本文:

 [1] 杨慧敏, 易海琼, 文劲宇, 等.一种实用的大电网低频振荡概率稳定性分析方[J], 电工技术学报, 2010, 25(3):124-129. YANG Hui-min, YI Hai-qiong, WEN Jin-yu, et al. A practical stability analysis method for large-scale power system based on low-frequency-oscillation probability[J]. Transactions of China Electrotechnical Society, 2010, 25(3):124-129. [2] 宋墩文, 杨学涛, 丁巧林, 等. 大规模互联电网低频振荡分析与控制方法综述[J], 电网技术, 2011, 35(10):22-28. SONG Dun-wen, YANG Xue-tao, DING Qiao-lin, et al. A survey on analysis on low frequency oscillation in large-scale interconnected power grid and its control measures[J]. Power System Technology, 2011, 35(10):22-28. [3] 赵学强, 杨增辉. 华东-福建联网低频振荡问题分析[J]. 华东电力, 2006, 34(2):21-24. ZHAO Xue-qiang, YANG Zeng-hui. Study on low frequency oscillation after the interconnection of eastchina and Fujian power grids[J]. East China Electric Power, 2006, 34(2):21-24. [4] 李丹, 苏为民, 张晶, 等. "9.1"内蒙古西部电网振荡的仿真研究[J], 电网技术, 2006, 30(6):41-47. LI Dan, SU Wei-min, ZHANG Jing, et al. Simulation study on west inner mongolia power grid oscillations occurred on September 1st, 2005[J]. Power System Technology, 2006, 30(6):41-47. [5] 齐军, 万江, 张红光, 等. 内蒙古电网小干扰安全稳定性分[J]. 内蒙古电力技术, 2007, 25(4):18-21. QI Jun, WAN Jiang, ZHANG Hong-guang, et al. Safety and stability analysis of low interferences in inner mongolia power grid[J].Inner Mongolia Electric Power, 2007, 25(4):18-21. [6] MA J, DONG Z Y, ZHANG P. Eigenvalue sensitivity analysis for dynamic power system[C]//2006 International Conference on Power System Technology. Chongqing:[s. n.], 2006:22-26. [7] 刘涛, 宋新立, 汤涌, 等. 特征值灵敏度方法及其在电力系统小干扰稳定分析中的应用[J], 电网技术, 2010, 34(4):82-87. LIU Tao, SONG Xin-li, TANG Yong, et al. Eigenvalue sensitivity and its application in power system small signal stability[J]. Power System Technology, 2010, 34(4):82-87. [8] LUO C, AJJARAPU V. A new method of eigenvalue sensitivity calculation using continuation of invariant subspaces[J]. IEEE Transactions on Power Systems, 2011, 26(1):479-480. [9] DONG Z Y, PANG C K, ZHANG P. Power system sensitivity analysis for probabilistic small signal stability assessment in a deregulated environment[J]. International Journal of Control, Automation and Systems, 2005, 3(2):355-362. [10] CHUNG C Y, DAI B. A generalized approach for computing most sensitive eigenvalues with respect to system parameter changes in large-scale power systems[J]. IEEE Transactions on Power Systems, 2016, 31(3):2278-2288. [11] 王彦博. 数值微分及其应用[D]. 上海:复旦大学,2005. WANG Yan-bo. Numerical differentiation and its application[D]. Shanghai:Fudan University, 2005. [12] 张华. 一维数值微分问题的Matlab软件包[D]. 河北:河北工业大学,2007. ZHANG Hua. A Matlab package for one dimensional numerical differentiation[D]. Hebei:Hebei University of Technology, 2007. [13] 宋歌. 电力负荷实测建模及时变性研究[D]. 北京:华北电力大学, 2015. SONG Ge. Research on measurement-based load modeling and time-variation[D]. Beijing:North China Electric Power University, 2015. [14] PETRIE A, ZHAO X P. Estimating eigenvalues of dynamical systems from time series with applications to predicting cardiac alternans[J]. Proceedings of the Royal Society A:Mathematical, Physical and Engineering Science, 2012, 468(2147):3649-3666. [15] 朱立勋. 三次样条插值的收敛性及一类三次广义样条插值的误差估计[D]. 吉林:吉林大学,2006. ZHU Li-xun. The convergence of cubic spline interpolation and the error estimations of certain generalized cubic spline interpolation[D]. Jilin:Jilin University, 2006. [16] 耿爱成. Matlab在三次样条函数教学中的应用[J]. 价值工程, 2016(18):181-182. GENG Ai-cheng. The application of Matlab in teaching of cubic spline interpolation function[J]. Value Engineering, 2016(18):181-182. [17] 王希云,黄建国,陈宇,等. 基于正则化方法的一个新型数值微分算法[J], 高等学校计算数学学报, 2009, 31(3):246-256. WANG Xi-yun, HUANG Jian-guo, CHEN Yu, et al. A new numerical differentiation algorithm with regularization[J]. Numerical Mathematics A Journal of Chinese Universities, 2009, 31(3):246-256. [18] 中国电力科学研究院.PSD-BPA小干扰稳定程序用户手册4.0版[Z]. 2007. [19] CHENG J, YAMAMOTO M. One new strategy for a priori choice of regularizing parameters in Tikhonov's regularization[J]. Inverse Problems, 2000, 16(4):31-38.
 [1] 于洋, 吴浩. 电力系统频率稳定及其统计特性的研究[J]. J4, 2010, 44(3): 550-556.