Please wait a minute...
 浙江大学学报(工学版)  2017, Vol. 51 Issue (7): 1324-1330    DOI: 10.3785/j.issn.1008-973X.2017.07.008
 土木工程

Hybrid model of peridynamics and finite element method under implicit schemes
YU Yang-tian, ZHANG Qing, GU Xin
Department of Engineering Mechanics, Hohai University, Nanjing 210098, China
 全文: PDF(1685 KB)   HTML

Abstract:

A hybrid model of peridynamics (PD) and finite element method (FEM) was proposed and applied to solve problems of fracture mechanics in order to combine the unique advantage of PD in solving discontinuities and the computational efficiency of FEM. The improved prototype microelastic brittle (PMB) model of peridynamics was utilized for the regions where material failure was expected. The region without failure was discretized by FEM. The truss element was introduced to bridge peridynamic subregions and finite element subregions. The hybrid model is based on the implicit schemes, and it need not consider a fictitious damping term in solving static problems. The computational efficiency and accuracy of the model were improved. The static elastic deformation of a simply supported beam and the propagation process of mode I fracture in a three points bend beam were simulated to verify the accuracy and utility of the presented model. Results obtained by the model agreed well with the theoretical solutions.

 CLC: TU375

 服务 把本文推荐给朋友 加入引用管理器 E-mail Alert 作者相关文章

#### 引用本文:

YU Yang-tian, ZHANG Qing, GU Xin. Hybrid model of peridynamics and finite element method under implicit schemes. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2017, 51(7): 1324-1330.

#### 链接本文:

 [1] MUROTANI K, YAGAWA G, CHOI J B. Adaptivefinite elements using hierarchical mesh and its application to crack propagation analysis [J]. Computer Methods in Applied Mechanics and Engineering, 2013, 253: 1-14. [2] CAMACHO G T, ORTIZ M. Computational modeling of impact damage in brittle materials [J]. International Journal of Solids and Structures, 1996, 33(20):2899-2938. [3] XU X P, NEEDLEMAN A. Numerical simulations of fast crack growth in brittle solids [J]. Journal of the Mechanics and Physics of Solids, 1994, 42(9):1397-1434. [4] SILLING S A. Reformulation of elasticity theory for discontinuities and long-range forces [J]. Journal of the Mechanics and Physics of Solids, 2000, 48(1):175-209. [5] SILLING S A, EPTON M, WECKNER O, et al. Peridynamic states and constitutive modeling [J]. Journal of Elasticity, 2007, 88(2): 151-184. [6] SILLING S A. Linearized theory of peridynamic states [J]. Journal of Elasticity, 2010, 99(1): 85-111. [7] SILLING S A, BOBARU F. Peridynamic modeling of membranes and fibers [J]. International Journal of Nonlinear Mechanics, 2005, 40(2): 395-409. [8] GERSTLE W, SAU N, SILLING S. Peridynamic modeling of concrete structures [J]. Nuclear Engineering and Design, 2007, 237(12): 1250-1258. [9] ASKARI E, BOBARU F, LEHOUCQ R B, et al. Peridynamics for multiscale materials modeling [C]//Journal of Physics: Conference Series. [S. l.]: IOP Publishing, 2008, 125(1): 012078. [10] XU J, ASKARI A, WECKNER O, et al. Peridynamic analysis of impact damage in composite laminates [J]. Journal of Aerospace Engineering, 2008, 21(3):187-194. [11] 沈峰,章青,黄丹,等.冲击荷载作用下混凝土结构破坏过程的近场动力学模拟[J].工程力学,2012(增1): 12-15. SHEN Feng, ZHANG Qing, HUANG Dan, et al. Peridynamics modeling of failure process of concrete structure subjected to impact loading [J]. Engineering Mechanics, 2012(supple.1): 12-15. [12] 胡祎乐,余音,汪海.基于近场动力学理论的层压板损伤分析方法[J].力学学报,2013,45(4): 624-628. HU Yi-le, YU Yin, WANG Hai. Damage analysis method for laminates based on peridynamic theory [J]. Chinese Journal of Theoretical and Applied Mechanics, 2013, 45(4): 624-628. [13] 谷新保,周小平. 含圆孔拉伸板的近场动力学数值模拟[J]. 固体力学学报, 2015, 36(5): 376-383. GU Xin-bao, ZHOU Xiao-ping. The numerical simulation of tensile plate with circular hole using peridynamic theory [J]. Chinese Journal of Solid Mechanics, 2015, 36(5): 376-383. [14] 郁杨天,章青,顾鑫.含单边缺口混凝土梁破坏的近场动力学模拟[J].工程力学,2016,33(12):80-85. YV Yang-tian, ZHANG Qing, GU Xin. Impact failure simulation of a single-edged notched concrete beam based on peridynamics [J]. Engineering Mechanics, 2016, 33(12): 80-85. [15] LAI X, REN B, FAN H, et al. Peridynamics simulations of geomaterial fragmentation by impulse loads [J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2015, 39(12): 1304-1330. [16] LAI X, LIU L S, LIU Q W, et al. Slope stabilityanalysis by peridynamic theory [C]//Applied Mechanics and Materials. [S. l.]: Trans Tech Publications, 2015, 744: 584-588. [17] ZHOU X P, GU X B, WANG Y T. Numerical simulations of propagation, bifurcation and coalescence of cracks in rocks [J]. International Journal of Rock Mechanics and Mining Sciences, 2015, 80: 241-254. [18] REN B, FAN H, BERGEL G L, et al. A peridynamics-SPH coupling approach to simulate soil fragmentation induced by shock waves [J]. Computational Mechanics, 2015, 55(2): 287-302. [19] FAN H, BERGEL G L, LI S. A hybrid peridynamics-SPH simulation of soil fragmentation by blast loads of buried explosive [J]. International Journal of Impact Engineering, 2016, 87: 14-27. [20] MACEK R W, SILLING S A. Peridynamics via finite element analysis [J]. Finite Elements in Analysis and Design, 2007, 43(15): 1169-1178. [21] KILIC B, MADENCI E. Coupling of peridynamic theory and the finite element method [J]. Journal of Mechanics of Materials and Structures, 2010, 5(5):707-733. [22] LIU W, HONG J W. A coupling approach of discretized peridynamics with finite element method [J]. Computer Methods in Applied Mechanics and Engineering, 2012, 245: 163-175. [23] HUANG D, LU G, QIAO P. An improved peridynamic approach for quasi-static elastic deformation and brittle fracture analysis [J]. International Journal of Mechanical Sciences, 2015, 94: 111-122. [24] AZIZI M A B. The peridynamic model of viscoelastic creep and recovery [J]. Multidiscipline Modeling in Materials and Structures, 2015, 11(4):579-597. [25] MADENCI E, OTERKUS S. Ordinary state-based peridynamics for plastic deformation according to von Mises yield criteria with isotropic hardening [J]. Journal of the Mechanics and Physics of Solids, 2015, 86: 192-219. [26] GHAJARI M, IANNUCCI L, CURTIS P. A peridynamic material model for the analysis of dynamic crack propagation in orthotropic media [J]. Computer Methods in Applied Mechanics and Engineering, 2014,276(7): 431-452. [27] SILLING S A, ASKARI E. A meshfree method based on the peridynamic model of solid mechanics [J]. Computers and Structures, 2005, 83(17): 1526-1535. [28] HUANG D, LU G, WANG C, et al. An extended peridynamic approach for deformation and fractureanalysis [J]. Engineering Fracture Mechanics, 2015, 141: 196-211. [29] 铁摩辛柯.弹性理论[M].北京：高等教育出版社,1990: 100-107. [30] JENQ Y S, SHAH S P. Mixed-mode fracture of concrete [J]. International Journal of Fracture, 1988,38(2): 123-142. [31] JOHN R, SHAH S P. Mixed-mode fracture of concrete subjected to impact loading [J]. Journal of Structural Engineering, 1990, 116(3): 585-602.
 [1] 王海龙, 凌佳燕, 孙晓燕, 李晓滨. 不锈钢筋混凝土柱小偏心受压性能[J]. 浙江大学学报(工学版), 2018, 52(10): 1919-1925. [2] 刘鑫, 陆洲导, 蔡自伟, 李凌志. 梁侧锚钢加固钢筋混凝土梁火灾后受剪性能[J]. 浙江大学学报(工学版), 2018, 52(5): 853-863. [3] 蔡自伟, 陆洲导, 李凌志, 苏磊, 林闯. 梁侧锚固钢板加固混凝土梁受剪性能试验[J]. 浙江大学学报(工学版), 2018, 52(1): 82-88. [4] 戴理朝, 王磊, 张建仁, 羊日华. 钢绞线锈蚀产物填充及裂缝宽度预测[J]. 浙江大学学报(工学版), 2018, 52(1): 97-105. [5] 范圣刚, 张岁寒, 孟畅. 高温冷却后奥氏体不锈钢力学性能试验研究[J]. 浙江大学学报(工学版), 2017, 51(12): 2348-2354. [6] 张军, 金伟良, 毛江鸿. 基于压磁效应的钢筋疲劳损伤试验研究[J]. 浙江大学学报(工学版), 2017, 51(9): 1681-1687. [7] 蒋翔, 童根树, 张磊. 耐火钢-混凝土组合梁耐火极限和承载力[J]. 浙江大学学报(工学版), 2017, 51(8): 1482-1493. [8] 金立兵, 金伟良, 王海龙, 夏晋. 多重环境时间相似理论及其应用[J]. J4, 2010, 44(4): 789-797.