[1] GRABNER H, GRABNER M, BISCHOF H. Real-time tracking via on-line boosting [C] ∥ Proceedings of British Machine Vision Conference. Edinburgh: BMVC, 2006, 1(5): 6.
[2] GRABNER H, LEISTNER C, BISCHOF H. Semi-supervised on-line boosting for robust tracking [M]∥Proceedings of European Conference on Computer Vision. Berlin Heidelberg: Springer, 2008: 234-247.
[3] ZHANG K, ZHANG L, YANG M H. Real-time compressive tracking [M]∥Proceedings of European Conference on Computer Vision. Berlin Heidelberg: Springer, 2012: 864-877.
[4] ZHANG K, SONG H. Real-time visual tracking via online weighted multiple instance learning [J]. Pattern Recognition, 2013, 46(1): 397-411.
[5] BABENKO B, YANG M H, BELONGIE S. Robust object tracking with online multiple instance learning [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33(8): 1619-1632.
[6] SANTNER J, LEISTNER C, SAFFARI A, et al. PROST: parallel robust online simple tracking [C] ∥ Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. San Francisco: IEEE, 2010: 723-730.
[7] BAI Y, TANG M. Robust visual tracking with ranking SVM [C]∥Proceedings of IEEE Conference on Image Processing. Brussels: IEEE, 2011: 517-520.
[8] COMANICIU D, RAMESH V, MEER P. Real-time tracking of non-rigid objects using mean shift [C]∥Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Hilton Head: IEEE, 2000, 2: 142-149.
[9] MEI X, LING H. Robust visual tracking and vehicle classification via sparse representation [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33(11): 2259-2272.
[10] ADAM A, RIVLIN E, SHIMSHONI I. Robust fragments-based tracking using the integral histogram [C] ∥ Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE, 2006: 798-805.
[11] KWON J, LEE K M. Visual tracking decomposition [C] ∥ Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. San Froncisco: IEEE, 2010: 1269-1276.
[12] ROSS D, LIM J, LIN R S, et al. Incremental learning for robust visual tracking [J]. International Journal of Computer Vision, 2008, 77(1-3): 125-141.
[13] YU H, KIM J, KIM Y, et al. An efficient method for learning nonlinear ranking SVM functions [J]. Information Sciences, 2012, 209(20): 37-48.
[14] ZHANG K, ZHANG L, YANG M H. Fast compressive tracking [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2014, 36(10): 2002-2015.
[15] KALAL Z, MIKOLAJCZYK K, MATAS J. Forward-backward error: automatic detection of tracking failures [C] ∥ Proceedings of IEEE Conference on Pattern Recognition. San Froncisco: IEEE, 2010: 2756-2759.
[16] KALAL Z, MIKOLAJCZYK K, MATAS J. Tracking-learning-detection [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 34(7): 1409-1422.
[17] BOUGUET J Y. Pyramidal implementation of the Lucas Kanade feature tracker description of the algorithm, openCV documetation [R]. Santa Clara, CA: Intel Corporation, Intel Microprocessor Research Labs. 1999.
[18] HERBRICH R, GRAEPEL T, OBERMAYER K. Support vector learning for ordinal regression [C]∥Proceedings of International Conference on Artificial Neural Networks. Edinburgh: ICANN, 1999: 97-102.
[19] FREUND Y, IYER R, SCHAPIRE R E. An efficient boosting algorithm for combining preferences [J]. Journal of Machine Learning Research, 2003, 4: 933-969.
[20] BURGES C, SHAKED T, RENSHAW E, et al. Learning to rank using gradient descent [C]∥Proceedings of International Conference on Machine Learning. Bonn: ICML, 2005: 89-96.
[21] YANG P, LIU Q, METAXAS D N. RankBoost with L1 regularization for facial expression recognition and intensity estimation [C]∥Proceedings of IEEE International Conference on Computer Vision. Kyoto: IEEE,2009: 1018-1025.
[22] BAI Y, TANG M. Robust visual tracking via weakly supervised ranking SVM [C]∥Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Providence: IEEE, 2012: 1854-1861.
[23] GU S, ZHENG Y, TOMASI C. Efficient visual object tracking with online nearest neighbor classifier [C]∥Proceedings of Asian Conference on Computer Vision. Queenstown: ACCV,2010: 271-282. |