Please wait a minute...
浙江大学学报(工学版)
自动化技术     
Dirichlet过程混合模型在非线性过程监控中的应用
罗林1, 苏宏业1, 班岚2
1. 浙江大学 智能系统与控制研究所,浙江 杭州 310027;2.北京科技大学 机械工程学院,北京 海淀 100083
Nonparametric bayesian based on  mixture of dirichlet process in application of fault detection
LUO Lin 1, SU Hong ye1, BAN Lan2
1. Institute of Cyber System & Control, Zhejiang University, Hangzhou 310027, China;2. School of Mechanical Engineering, University of Science and Technology Beijing,Haidian District 100083, China
 全文: PDF(1554 KB)   HTML
摘要:

针对高斯混合模型在模型选择阶段易产生有噪声或过拟合的模型估计问题,提出基于Dirichlet过程混合模型的非参数贝叶斯故障诊断方法.通过重新定义高斯混合模型中的混合权重,利用stick breaking法建立Dirichlet过程混合模型.通过具有截断作用的变分法近似推理出模型参数以及隐含变量,利用所得后验对故障模型进行估计,并提出基于后验概率的监测统计量以度量出故障状态在后验中的波动.在连续搅拌釜式反应器和Tennessee Eastman化工过程上的实验结果表明,该方法在故障检测方面优于传统的核主元分析法,并且具有较高的故障诊断率.

Abstract:

A nonparametric Bayesian fault detection method based on Dirichlet process mixture model was proposed to resolve the issues of Gaussian mixture model, i.e., noisy model size estimates and overfitting proneness in the model estimation. The construction of Dirichlet process mixture model was constructed baseed on the stick breaking method and the redefinition of the mixing weight in Gaussian mixture model. The parameters and latent variables was approximatively infered  by an efficient truncated variational Bayesian inference algorithm. The resulting posterior distribution was utilized to the estimation of fault model. The monitoring statistic was proposed to measure the variation inside the posterior. The results on the non isothermal continuous stirred tank reactor and Tennessee Eastman chemical plant simulation show that the performances of fault diagnosis by the presented method are superior to that by kernel principal component analysis with higher accuracy.

出版日期: 2015-11-01
:  TP 311  
基金资助:

国家自然科学基金资助项目(61320106009).

服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

罗林, 苏宏业, 班岚. Dirichlet过程混合模型在非线性过程监控中的应用[J]. 浙江大学学报(工学版), 10.3785/j.issn.1008 973X.2015.11.027.

LUO Lin, SU Hong ye, BAN Lan. Nonparametric bayesian based on  mixture of dirichlet process in application of fault detection. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 10.3785/j.issn.1008 973X.2015.11.027.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008 973X.2015.11.027        http://www.zjujournals.com/eng/CN/Y2015/V49/I11/2230

[1] VENKATASUBRAMANIAN V, RENGASWAMY R, YIN K., et al. A review of process fault detection and diagnosis part I: Quantitative model based methods [J]. Computers and Chemical Engineering, 2003, 27(3): 293-311.
[2] VENKATASUBRAMANIAN V, RENGASWAMY R, KAVURI S N. A review of process fault detection and diagnosis part II: Qualitative models and search strategies [J]. Computers and Chemical Engineering, 2003, 27(3): 313-326.
[3] VENKATASUBRAMANIAN V, RENGASWAMY R, KAVURI S N, et al. A review of process fault detection and diagnosis part III: Process history based methods [J]. Computers and Chemical Engineering, 2003, 27(3): 327-346.
[4] QIN S J. Survey on data driven industrial process monitoring and diagnosis [J]. Annual Reviews in Control, 2012, 36(2): 220-234.
[5] SHEN Y, STEVEN X D, ADEL H, et al. A comparison study of basic data driven fault diagnosis and process monitoring methods on the benchmark Tennessee Eastman process [J]. Journal of Process Control, 2012, 22(9): 1567-1581.
[6] LIN L, HONGYE S, BAOFEN Z, et al. Generalized convexity based inexact projection method for multiple kernel learning [J]. Journal of Intelligent and Fuzzy Systems, 2014, 27(4): 1825-1835.
[7] YU J, QIN S J. Multimode process monitoring with Bayesian inference based finite Gaussian mixture models [J]. American Institute of Chemical Engineers, 2008, 54(7): 1811-1829.
[8] TAO C, JIE Z. On line multivariate statistical monitoring of batch processes using Gaussian mixture model [J]. Computers and Chemical Engineering, 2010, 34(4):500-507.
[9] MCLACHLAN G, PEEL D. Finite mixture models [M]. John Wiley & Sons: New York, USA, 2000.
[10] RUSSELL E L, CHIANG L H, BRAATZ R D. Fault detection in industrial processes using canonical variate analysis and dynamic principal component analysis [J]. Chemometrics and Intelligent Laboratory Systems, 2000, 51(1): 81-93.
[11] CHATZIS S P, KOSMOPOULOS D, VARVARIGOU T. Signal modeling and classification using a robust latent space model based on t distributions [J]. IEEE Transactions on Signal Processing, 2008, 56(3):949-963.
[12] DAVID B. Bayesian Reasoning and Machine Learning [M]. Cambridge University Press: New York, USA, 2012.
[13] ATTIAS H. A variational bayesian framework for graphical models [C]∥ Advances in Neural Information Processing Systems. Denver: MIT Press, 2000: 209215.
[14] LIN L, LEI X, KRUGER U, et al. A novel Bayesian robust model and its application for fault detection and automatic supervision of nonlinear process [J]. Industrial & Engineering Chemistry Research. 2015, 54 (18): 5048-5061.
[15] CHEN Q, KRUGER U, MERONK M, et al. Synthesis of T2 and Q statistics for process monitoring [J], Control Engineering Practice, 2004, 12(6): 745-755.
[16] FIGUEIREDO M, JAIN A K. Unsupervised learning of finite mixture models [J]. IEEE Transaction on Pattern Analysis and Machine Intelligence. 2002, 24(3): 381-396.
[17] CHO J H, LEE J M, CHOI S W, et al. Fault identification for process monitoring using kernel principal component analysis [J]. Chemical Engineering Science, 2005, 60(1): 279-288.
[18] RICKER NL. Decentralized control of the tennessee eastman challenge process [J]. Journal of Process Control, 1996, 6(4): 205-221.
[19] ZHIQIANG G, ZHIHUAN S. Performance driven ensemble learning ICA model for improved non Gaussian process monitoring [J]. Chemometrics and Intelligent Laboratory Systems, 2013, 123: 1-8.
[20] LEI X, XIAOZHONG L, JIUSUN Z. Shrinking principal component analysis for enhanced process monitoring and fault isolation [J]. Industrial & Engineering Chemistry Research, 2013, 52 (49): 17475-17486.
[21] LARSSON T, HESTETUN K, HOVLAND E, et al. Self Optimizing control of a large scale plant: the Tennessee Eastman process [J]. Industrial & Engineering Chemistry Research, 2001, 40(22): 4889-4901.

[1] 王海艳, 程严. 基于离散系数的双向服务选择方法[J]. 浙江大学学报(工学版), 2017, 51(6): 1197-1204.
[2] 袁友伟, 余佳, 郑宏升, 王娇娇. 基于新颖性排名和多服务质量的云工作流调度算法[J]. 浙江大学学报(工学版), 2017, 51(6): 1190-1196.
[3] 许荣斌, 石军, 张鹏飞, 谢莹. Petri网的映射变迁关系相似性度量[J]. 浙江大学学报(工学版), 2017, 51(6): 1205-1213.
[4] 常超, 刘克胜, 谭龙丹, 贾文超. 基于图模型的C程序数据流分析[J]. 浙江大学学报(工学版), 2017, 51(5): 1007-1015.
[5] 王继奎. 贝叶斯冲突Web数据可信度算法[J]. 浙江大学学报(工学版), 2016, 50(12): 2380-2385.
[6] 涂鼎, 陈岭, 陈根才, 吴勇, 王敬昌. 基于在线层次化非负矩阵分解的文本流主题检测[J]. 浙江大学学报(工学版), 2016, 50(8): 1618-1626.
[7] 杨莎, 叶振宇, 王淑刚, 陶海, 李石坚, 潘纲, 朱斌. 感认知增强的智能机械手系统[J]. 浙江大学学报(工学版), 2016, 50(6): 1155-1159.
[8] 汪宏浩, 王慧泉, 金仲和. 基于增量链接的可回滚星载软件在轨更新方法[J]. 浙江大学学报(工学版), 2015, 49(4): 724-731.
[9] 王继奎, 李少波. 基于真值发现的冲突数据源质量评价算法[J]. 浙江大学学报(工学版), 2015, 49(2): 303-318.
[10] 蔡华林,陈刚,陈珂. 多类别复合资源的空间匹配[J]. 浙江大学学报(工学版), 2015, 49(1): 69-78.
[11] 俞东进,殷昱煜,吴萌萌,刘愉. 基于混合协同过滤的Web服务QoS预测方法[J]. 浙江大学学报(工学版), 2014, 48(11): 2039-2045.
[12] 柯海丰,应晶. 基于R-ELM的实时车牌字符识别技术[J]. 浙江大学学报(工学版), 2014, 48(7): 1209-1216.
[13] 刘智慧, 张泉灵. 大数据技术研究综述[J]. 浙江大学学报(工学版), 2014, 48(6): 957-972.
[14] 田甜,巩敦卫. 基于覆盖难度选择路径的测试数据进化生成[J]. 浙江大学学报(工学版), 2014, 48(5): 948-994.
[15] 柯海丰,应晶. 基于R-ELM的实时车牌字符识别技术[J]. J4, 2014, 48(2): 0-0.