Please wait a minute...
浙江大学学报(工学版)
土木工程     
微平面模型模拟ASR作用下混凝土力学行为
段安1, 张大伟1, ALNAGGAR Mohammed2
1. 浙江大学 建筑工程学院,浙江 杭州310058;2. 美国西北大学 土木与环境工程学院,埃文斯顿 60208
Microplane modeling of ASR effects on concrete structures
DUAN An1, ZHANG Da wei1, ALNAGGAR Mohammed2
1. College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058, China;2. Department of Civil and Environmental Engineering, Northwestern University, Evanston 60208, USA
 全文: PDF(1129 KB)   HTML
摘要:

为了准确模拟发生碱 硅酸反应(ASR)的混凝土结构的复杂受力行为,在最新一代微平面理论的基础上,提出适于分析ASR作用下混凝土力学行为的微平面模型.修改了微平面应力边界和法向模量表达式,引入应力效应函数来模拟应力对ASR膨胀应变的影响.开发相应的动力显式算法,完成了该算法在有限元程序ABAQUS中的集成.对ASR作用下的混凝土试件力学性能和变形试验进行模拟可知,计算值与试验值吻合良好,验证了该模型的有效性. 

Abstract:

A modified microplane model was developed to simulate the alkali silica reaction (ASR) damage based on the latest version of microplane theory M7 in order to accurately modeling the complicated behavior of concrete structures subjected to ASR. The material damage caused by the volume expansion of ASR gel was modeled in M7 as a reduction of material stiffness and boundaries. A stress effect function was proposed to depend on the normal stress of the microplane in order to consider the modification of ASR expansions due to applied stresses. The explicit algorithm for the model was established and implemented into commercial software ABAQUS. Finite element analysis of the ASR effect on laboratory specimens was conducted. The analytical results accorded with the experimental data. The validity of the proposed model was illustrated.

出版日期: 2015-10-29
:  TU 528  
基金资助:

浙江省自然科学基金资助项目(LY14E080013);中央高校基本科研业务费专项资金资助项目(2015FZA4019, 2015FZA4018);教育部留学回国人员科研启动基金资助项目.

通讯作者: 张大伟,男,副教授.ORCID: 0000 0001 7838 6941.     E-mail: dwzhang@zju.edu.cn
作者简介: 段安(1982—),女,讲师,从事混凝土耐久性的研究.ORCID: 0000 0002 0684 3872. E-mail: duanan09@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

段安, 张大伟, ALNAGGAR Mohammed. 微平面模型模拟ASR作用下混凝土力学行为[J]. 浙江大学学报(工学版), 10.3785/j.issn.1008 973X.2015.10.016.

DUAN An, ZHANG Da wei, ALNAGGAR Mohammed. Microplane modeling of ASR effects on concrete structures. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 10.3785/j.issn.1008 973X.2015.10.016.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008 973X.2015.10.016        http://www.zjujournals.com/eng/CN/Y2015/V49/I10/1939

[1] GIACCIO G, ZERBINO R, PONCE J M, et al. Mechanical behavior of concretes damaged by alkali silica reaction [J]. Cement and Concrete Research, 2008, 38(7): 993-1004.
[2] MULTON S, TOUTLEMONDE F. Effect of applied stresses on alkali silica reaction induced expansions [J]. Cement and Concrete Research, 2006, 36(5): 912-920.
[3] PIETRUSZCZAK S. On the mechanical behavior of concrete subjected to alkali aggregate reaction [J]. Computers and Structures, 1996, 58(6): 1093-1097.
[4] BAZANT Z P, OH B H. Microplane model for progressive fracture of concrete and rock [J]. Journal of Engineering Mechanics, 1985, 111(4): 559-582.
[5] CANER F, BAZANT Z P. Microplane model M7 for plain concrete. I: formulation [J]. Journal of Engineering Mechanics, 2013, 139(12): 1714-1723.
[6] CANER F, BAZANT Z P. Microplane model M7 for plain concrete. II: calibration and verification [J]. Journal of Engineering Mechanics, 2013, 139(12): 1724-1735.
[7] 贾明晓,王君杰.微平面模型取向与权重的改进计算方法[J].工程力学,2013,30(6): 54-59.
JIA Ming xiao, WANG Jun jie. An improved method to calculate orientation and weight in a microplane constitutive model [J]. Engineering Mechanics, 2013, 30(6): 54-59.
[8] ALNAGGAR M, CUSATIS G, DI LUZIO G. Lattice discrete particle modeling (LDPM) of alkali silica reaction (ASR) deterioration of concrete structures [J]. Cement and Concrete Composites, 2013, 41(8): 45-59.
[9] CUSATIS G, PELESSONE D, MENCARELLI A. Lattice discrete particle model (LDPM) for concrete failure behavior of concrete. I: theory [J]. Cement and Concrete Composites, 2011, 33(9): 881-890.
[10] CUSATIS G, MENCARELLI A, PELESSONE D, et al. Lattice discrete particle model (LDPM) for failure behavior of concrete. II: calibration and validation [J]. Cement and Concrete Composites, 2011, 33(9): 891-905.
[11] AHMED T, BURLEY E, RIGDEN S. The effect of alkali silica reaction on the fatigue behaviour of plainconcrete tested in compression, indirect tension and flexure [J]. Magazine of Concrete Research, 1999, 51(6): 375-390.
[12] MULTON S, SEIGNOL J F, TOUTLEMONDE T. Structural behavior of concrete beams affected by alkali silica reaction [J]. ACI Materials Journal, 2005, 102(2): 67-76.
[13] BAZANT Z P, BAWEJA S. Creep and shrinkage prediction model for analysis and design of concrete structures: model B3 [J]. Materials and Structures, 1995, 28(6): 357-365.

[1] 欧祖敏, 孙璐. 冻融损伤混凝土的弯曲疲劳寿命可靠性分析[J]. 浙江大学学报(工学版), 2017, 51(6): 1074-1081.
[2] 李静, 王哲. 似平面应力条件下混凝土的变形特性[J]. 浙江大学学报(工学版), 2017, 51(4): 745-751.
[3] 温小栋, 蔡煜梁, 赵莉, 冯蕾. 凝灰岩机制砂混凝土抗低温硫酸盐侵蚀性[J]. 浙江大学学报(工学版), 2017, 51(3): 532-537.
[4] 熊海贝,曹纪兴,张凤亮. 含加强层框筒结构位移监测方法[J]. 浙江大学学报(工学版), 2016, 50(9): 1752-1760.
[5] 吴萌, 姬永生, 陈晓峰, 张领雷, 陈向东. 超细粉煤灰对碳硫硅钙石型硫酸盐破坏的影响[J]. 浙江大学学报(工学版), 2016, 50(8): 1479-1485.
[6] 熊海贝, 李奔奔, 江佳斐. FRP约束混凝土圆柱应力-应变模型的适用性[J]. 浙江大学学报(工学版), 2015, 49(12): 2363-2375.
[7] 杜明月, 田野, 金南国, 王宇纬, 金贤玉. 基于水泥水化的早龄期混凝土温湿耦合[J]. 浙江大学学报(工学版), 2015, 49(8): 1410-1416.
[8] 姚晓莉, 易思阳, 范利武, 徐旭, 俞自涛, 葛坚. 不同孔隙率下含湿加气混凝土的有效导热系数[J]. 浙江大学学报(工学版), 2015, 49(6): 1101-1107.
[9] 童晶, 金贤玉, 田野, 金南国. 基于DIC技术的锈蚀钢筋混凝土表面开裂[J]. 浙江大学学报(工学版), 2015, 49(2): 193-199.
[10] 王雪松, 金贤玉, 田野, 李蓓, 金南国. 开裂混凝土中钢筋加速锈蚀方法适用性[J]. J4, 2013, 47(4): 565-574.
[11] 陈军, 金南国, 金贤玉, 洪天从. 基于电阻率法研究混凝土渗透性能演变规律[J]. J4, 2013, 47(4): 575-580.
[12] 俞可权, 陆洲导, 唐安静.
高温后混凝土断裂全过程的裂缝扩展阻力曲线
[J]. J4, 2013, 47(4): 588-594.
[13] 谢中凯,刘国华. 近似熵在混凝土结构损伤识别中的应用[J]. J4, 2013, 47(3): 456-464.
[14] 王雪松, 金贤玉, 田野, 金南国. 基于非均匀锈蚀的带肋钢筋黏结性能[J]. J4, 2013, 47(1): 154-161.
[15] 谢中凯, 刘国华, 吴志根. 基于传递熵的梁结构损伤动力识别[J]. J4, 2012, 46(10): 1880-1886.