Please wait a minute...
J4  2013, Vol. 47 Issue (1): 109-115    DOI: 10.3785/j.issn.1008-973X.2013.01.016
机械与能源工程     
中性悬浮大颗粒对湍槽流影响的数值研究
余钊圣, 王宇, 邵雪明, 吴腾虎
浙江大学 流体传动与控制国家重点实验室,浙江 杭州 310027
Numerical studies on effects of neutrally buoyant large particles
on turbulent channel flow
YU Zhao-sheng, WANG Yu, SHAO Xue-ming,WU Teng-hu
State Key Laboratory of Fluid Power Transmission and Control, Zhejiang University, Hangzhou 310027, China
 全文: PDF  HTML
摘要:

采用虚拟区域方法对含有中性悬浮大颗粒的湍槽流进行双重直接数值模拟,研究当摩擦雷诺数为180、颗粒体积分数分别为079%和236%时颗粒对湍流场的影响.结果表明:颗粒的存在削弱了大尺度准流向涡结构,导致近壁处流向脉动速度强度的削弱,且诱导出较小尺度的涡结构,导致近壁处横向和展向脉动速度的增强.颗粒的存在对近壁区脉动速度概率密度分布的影响显著:降低了流向和横向脉动速度概率分布的倾斜度;减小了流向出现大速度脉动的概率,增加了横向和展向出现大速度脉动的概率.对于以方差归一化的脉动速度概率分布,颗粒的影响很小.

Abstract:

A direct-forcing fictitious domain method was employed to perform fully-resolved numerical simulations of turbulent channel flow laden with large neutrally buoyant particles. The effects of the particles on the turbulence  at the friction Reynolds number of 180 were investigated. The particle volume fractions are 0.79% and 2.36%, respectively. Results show that the presence of particles decreases the maximum rms of streamwise velocity fluctuation near wall via weakening the large-scale streamwise vortices, and on the other hand increases the rms of transverse and spanwise fluctuating velocities in vicinity of the wall via inducing smallerscale vortices. The probability density function (PDF) of the fluctuating velocities near wall was significantly modified by the addition of the particles: firstly, the skewness of the PDF of the streamwise and transverse velocities was reduced, and secondly, the probability for large fluctuating velocities was decreased in the streamwise direction but increased in other two directions. However, the effect of the particles on the velocity PDF normalized with the variance (i.e. rms velocity) is small.

出版日期: 2013-01-01
:  TU 411  
基金资助:

国家自然科学基金资助项目(11072217,10872181);中央高校基本科研业务费专项资金资助项目(2009QNA4036, 2010QNA4015)

作者简介: 余钊圣(1974-), 男, 副教授, 从事流体力学的研究. E-mail: yuzhaosheng@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

余钊圣, 王宇, 邵雪明, 吴腾虎. 中性悬浮大颗粒对湍槽流影响的数值研究[J]. J4, 2013, 47(1): 109-115.

YU Zhao-sheng, WANG Yu, SHAO Xue-ming,WU Teng-hu. Numerical studies on effects of neutrally buoyant large particles
on turbulent channel flow. J4, 2013, 47(1): 109-115.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2013.01.016        http://www.zjujournals.com/eng/CN/Y2013/V47/I1/109

[1] GORE R A, CROWE C T. Effect of particle size on modulating turbulent intensity [J]. International Journal of Multiphase Flow, 1989, 15(2): 279-285.
[2] HETSRONI G. Particle turbulence interaction [J]. International Journal of Multiphase Flow, 1989, 15(5): 735-746.
[3] ZISSELMAR R, MOLERUS O. Investigation of solid-liquid pipe flow with regard to turbulence modification [J]. Chemical Engineering Journal, 1979, 18(3): 233-239.
[4] RASHIDI M, HETSRONI G, BANERJEE S. Particle turbulence interaction in a boundary layer [J]. International Journal of Multiphase Flow, 1990, 16(6): 935-949.
[5] KAFTORI D, HETSRONI G, BANERJEE S. The effect of particles on wall turbulence [J]. International Journal of Multiphase Flow, 1998, 24(3): 359-386.
[6] PAN Y, BANERJEE S. Numerical simulation of particle interactions with wall turbulence [J]. Physics of Fluids, 1996, 8(10): 2733-2755.
[7] PAN Y, BANERJEE S. Numerical investigation of the effects of large particles on wall turbulence [J]. Physics of Fluids, 1997, 9(12): 3786-3807.
[8] KAJISHIMA T, TAKIGUCHI S, HAMASAKI H, et al. Turbulence structure of particle-laden flow in a vertical plane channel due to vortex shedding [J]. JSME International Journal Series B: Fluids and Thermal Engineering, 2001, 44(4): 526-535.
[9] UHLMANN M. Interfaceresolved direct numerical simulation of vertical particulate channel flow in the turbulent regime [J]. Physics of Fluids, 2008, 20(5): 053305.
[10] TEN C A, DERKSEN J J, PORTELA L M, et al. Fully resolved simulations of colliding mono-dispersed spheres in forced isotropic turbulence [J]. Journal of Fluid Mechanics, 2004, 519: 233-271.
[11] LUCCI F, FERRANTE A, ELGHOBASHII S. Modulation of isotropic turbulence by particles of Taylor length-scale size [J]. Journal of Fluid Mechanics, 2010, 650: 555.
[12] WU Teng-hu, SHAO Xue-ming, YU Zhao-sheng. Fully resolved numerical simulation of turbulent pipe flows laden with large neutrally-buoyant particles [J]. Journal of Hydrodynamics, 2010, 23(1): 21-25.
[13] SHAO Xue-ming, WU Teng-hu, YU Zhao-sheng. Fully resolved numerical simulation of particle-laden turbulent flow in a horizontal channel at a low Reynolds number [J]. Journal of Fluid Mechanics, 2012, 693:319-344.
\[14\] 吴腾虎.管道内颗粒悬浮流中大颗粒和湍流相互作用的直接数值模拟研究\[D\].杭州:浙江大学,2011.
WU Teng-hu. Fully resolved direct numerical simulations of interactions between big particles and turbulence in particle-laden pipe and channel flows \[D\]. Hangzhou:Zhejiang University, 2011.
[15] YU Zhao-sheng, SHAO Xue-ming. A direct-forcing fictitious domain method for particulate flows [J]. Journal of Computational Physics, 2007, 227(1): 292-314.
[16] YU Zhao-sheng, SHAO Xueming, WACHS A. A fictitious domain method for particulate flows with heat transfer [J]. Journal of Computational Physics, 2006, 217(2): 424-452.
[17] GLOWINSKI R, PAN T W, HESLA T I, et al. A distributed Lagrange multiplier/fictitious domain method for particulate flows [J]. International Journal of Multiphase Flow, 1999, 25(5): 755-794.
[18] SUN Bo, YU Zhao-sheng, SHAO Xue-ming. Inertial migration of a circular particle in nonoscillatory and oscillatory pressuredriven flows at moderately high Reynolds numbers [J]. Fluid Dynamics Research, 2009, 41(5): 055501.
[19] SHAO Xue-ming, YU Zhao-sheng, SUN Bo. Inertial migration of spherical particles in circular Poiseuille flow at moderately high Reynolds numbers [J]. Physics of Fluids, 2008, 20(10): 103307.
[20] YU Zhao-sheng, SHAO Xue-ming. Direct numerical simulation of particulate flows with a fictitious domain method [J]. International Journal of Multiphase Flow, 2010, 36(2): 127-134.
[21] KIM J, MOIN P, MOSER R. Turbulence statistics in fully developed channel flow at low Reynolds number [J]. Journal of Fluid Mechanics, 1987, 177: 133-166.
[22] DINAVAHI S P G, BREUER K S, SIROVICH L. Universality of probability density functions in turbulent channel flow [J]. Physics of Fluids, 1995, 7(5): 1122-1129.
[23] ZHOU J, ADRIAN R J, BALACHANDAR S, et al. Mechanisms for generating coherent packets of hairpin vortices in channel flow [J]. Journal of Fluid Mechanics, 1999, 387: 353-396.

[1] 刘长殿, 孙红月, 康剑伟, 杜丽丽. 土体的充气阻渗试验[J]. J4, 2014, 48(2): 236-241.
[2] 柯瀚,王文芳,魏长春,陈云敏,詹良通. 填埋体饱和渗透系数影响因素室内研究[J]. J4, 2013, 47(7): 1164-1170.
[3] 王林涛,龚国芳,施虎,刘怀印. 基于盾构密封舱压力直接反馈地表变形控制[J]. J4, 2012, 46(7): 1182-1188.
[4] 刘永莉,孙红月,于洋,詹伟,尚岳全. 基于BOTDR监测技术抗滑桩上滑坡推力确定[J]. J4, 2012, 46(5): 798-803.
[5] 林巍, 楼文娟, 申屠团兵, 黄铭枫. 高层建筑脉动风压的非高斯峰值因子方法[J]. J4, 2012, 46(4): 691-697.
[6] 刘永莉, 孙红月, 于洋, 詹伟, 尚岳全. 抗滑桩内力的BOTDR监测分析[J]. J4, 2012, 46(2): 243-249.
[7] 徐日庆,张俊,朱剑锋, 王兴陈. 考虑扰动影响的修正Duncan-Chang模型[J]. J4, 2012, 46(1): 1-7.
[8] 周建, 郑鸿镔, 温晓贵, 管林波, 邓以亮. 考虑中主应力系数影响的主应力轴旋转下
原状软黏土变形研究
[J]. J4, 2011, 45(12): 2134-2141.
[9] 薛文, 金伟良, 横田弘. 养护条件与暴露环境对氯离子传输的耦合作用[J]. J4, 2011, 45(8): 1416-1422.
[10] 陈贵锋,马晓薇,吴建海,马巧云,薛晶晶,郝秋艳. 快速热处理对高能粒子辐照硅中氧沉淀的影响[J]. J4, 2011, 45(5): 928-933.
[11] 陈国红, 谢康和, 程永峰, 徐妍. 考虑涂抹区渗透系数变化的砂井地基固结解[J]. J4, 2011, 45(4): 665-670.
[12] 王艳, 李海峰, 徐熙平. 双灯投影机方棒照明系统的设计[J]. J4, 2011, 45(2): 382-386.
[13] 施虎,龚国芳,杨华勇,汪慧. 盾构掘进机推进力计算模型[J]. J4, 2011, 45(1): 126-131.
[14] 苏锋, 蒋晔, 蔡永昌. 钢管混凝土梁柱节点受力性能有限元分析[J]. J4, 2010, 44(10): 1876-1882.
[15] 朱道建. 柱状节理岩体开挖卸荷效应及破裂区分布规律[J]. J4, 2010, 44(10): 1967-1973.