Please wait a minute...
J4  2011, Vol. 45 Issue (11): 1997-2001    DOI: 10.3785/j.issn.1008-973X.2011.11.018
能源工程     
动力舱冷却模块优化匹配方法实验
刘震涛,吕锋,俞小莉
浙江大学 动力机械及车辆工程研究所,浙江 杭州 310027
Experiments on match optimization of underhood cooling module
LIU Zhen-tao, LV Feng,YU Xiao-li
Power Machinery & Vehicular Engineering Institute,Zhejiang University, Hangzhou 310027,China
 全文: PDF  HTML
摘要:

为了优化商用车冷却系统的匹配设计,提出基于动力舱前端模块风洞实验的冷却模块优化匹配方法.并以某商用车为原型,进行应用验证.将动力舱内前端模块按设计要求试制成前端零部件模型、冷凝器、中冷器、水散热器4排布置,在风洞试验台上进行性能试验研究.完成冷却模块与风扇的匹配设计,并通过道路试验检验该冷却系统的运行性能.研究结果表明,在4.0~10.0 m/s风速下,单个水散热器的冷却风压降占舱内前端模块总压降的55%~58%,舱内零部件对压降约有3%~5%的影响. 当有效迎风速度达到7.0 m/s时,模块散热量已满足系统额定点要求.基于本方法匹配的冷却系统性能达到设计要求,前端冷却模块的匹配试验可提高系统设计精度,且有利于节能.

Abstract:

To improve the design and match of commercial vehicle cooling system, a cooling module matching method based on underhood front module test in wind tunnel was proposed. And to a commercial vehicle for the prototype, it has been verified. The underhood front module was composed of air duct parts' modle, A/C condencer, charge air cooler (CAC) and radiator in four rows.It was tested in a wind tunnel test stand according to design requirement. The design and match of cooling module and fan were finished according to the wind test result. Finally the cooling system performance was trialed by the road test. The test results showed that when the air speed is 4.0-10.0 m/s, the single radiator's pressure drop is 55%-58% of the total number, and the air duct parts' pressure drop influence is about 3%-5%. The module's heat dissipating capacity meets the system requirement at rated load and with the effective wind speed being 7.0 m/s. The cooling system, which was designed by this method, was of good performance on road. The front end cooling module testing is propitious to improve the system design precision and save energy.

出版日期: 2011-12-08
:  TK 424.2  
作者简介: 刘震涛(1971-),男,副研究员,从事车辆热管理、清洁动力技术研究.E-mail:liuzt@zju.edu.cn.
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  

引用本文:

刘震涛,吕锋,俞小莉. 动力舱冷却模块优化匹配方法实验[J]. J4, 2011, 45(11): 1997-2001.

LIU Zhen-tao, LV Feng,YU Xiao-li. Experiments on match optimization of underhood cooling module. J4, 2011, 45(11): 1997-2001.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2011.11.018        https://www.zjujournals.com/eng/CN/Y2011/V45/I11/1997

[1] 姚仲鹏, 王国新. 车辆冷却传热[M]. 北京: 北京理工大学出版社, 2001:222-227.
[2] 胡群,韩同群,张云鹏. 车用涡轮增压汽油机冷却系统设计与匹配 [J].湖北汽车工业学院学报, 2008,22(4):18-22.
HU Qun,HAN Tongqun,ZHANG Yunpeng. Design and match of one turbocharge engine cooling system [J]. Journal of Hubei Automotive Industries Institute, 2008,22(4):18-22.
[3] FRANK G R. Engine cooling system design for heavy duty trucks [J]. SAE Transactions, 770023, 1977, 86(1):78-87.
[4] 王刚,李云清,梁新月,等. 对某型发动机冷却系统的设计与匹配研究[J].车辆与动力技术,2007,108(4):32-35.
WANG Gang,LI Yunqing,LIANG Xinyue,et al. The design and matching of cooling system for one engine [J]. Vehicle & Power Technology, 2007,108(4):32-35.
[5] 陆国栋,俞小莉,张毅,等. 间距对轮式装载机冷却组性能影响的风洞试验[J].浙江大学学报,2007,41(4):574-576.
LU Guodong,YU Xiaoli,ZHANG Yi,et al. Wind tunnel test of spacing effects on wheel loader cooling packege performance [J]. Journal of Zhejiang University : Engineering Science, 2007,41(4):574-576.
[6] HALLQVIST T. The cooling airflow of heavy trucks — a parametric study [C]∥SAE World Congress & Exhibition, Thermal Management Systems (Part 1 of 2). Detroit: SAE, 2008: 2008-01-1171.
[7] HUSSEIN J, WATKINS S,DIXON C. Reduced drag and adequate cooling for passenger vehicles using variable area front air intakes [C]∥SAE World Congress & Exhibition, Vehicle Aerodynamics (Part 2 of 5). Detroit: SAE, 2006: 2006-01-0342.

No related articles found!