Please wait a minute...
J4  2011, Vol. 45 Issue (10): 1848-1854    DOI: 10.3785/j.issn.1008-973X.2011.10.025
电气工程     
注入及感应电流磁共振电阻抗成像对比
刘阳1, 戴松世2
1.厦门理工学院 电子与电气工程系,福建 厦门 361024;2.浙江大学 电气工程学院,浙江 杭州 310027
Comparison between injected current and induced current magnetic
resonance electrical impedance tomography
LIU Yang1, DAI Song-shi2
1. Department of Electronic and Electrical Engineering, Xiamen University of Technology, Xiamen 361024, China;
2. College of Electrical Engineering, Zhejiang University, Hangzhou 310027, China
 全文: PDF  HTML
摘要:

为了对比注入电流磁共振电阻抗成像(MREIT)及感应电流磁共振电阻抗成像(IC-MREIT)用于重构人体头部组织电导率分布的性能,分别在3层球头模型及包含5种组织的真实头模型上进行仿真.正问题仿真结果表明:在满足人体安全性要求的前提下,2种成像方法在头部组织内产生的电流密度的强度处于同一数量级,但IC-MREIT产生的电流密度略大且分布受颅骨影响较小.基于J-substitution算法的逆问题仿真结果表明:对于3层球头模型,IC-MREIT能够在较少的迭代次数内,以更高的精度重构出电导率分布;对于真实头模型,MREIT具有更好的收敛特性和成像精度.

Abstract:

The simulations were conducted on the threesphere head model and fivecompartment realistic head model in order to evaluate the performance of the injected current magnetic resonance electrical impedance tomography (MREIT) and the induced current magnetic resonance electrical impedance tomography (IC-MREIT) to image the conductivity distribution of head-brain tissues. The simulation results of the forward problem show that the current densities in the head produced by MREIT and IC-MREIT are of the same order of magnitude when the safety requirement is satisfied. The current density produced by IC-MREIT is a little larger and is less affected by the skull. The simulation results of the inverse problem based on the J-substitution algorithm indicate that IC-MREIT can image the conductivity distribution with higher accuracy than MREIT in less iterations for the threesphere head model; the convergence behavior and imaging precision of MREIT are superior to IC-MREIT for the realistic head model.

出版日期: 2011-10-01
:  TM 15  
基金资助:

福建省教育厅A类资助项目(JA11233);厦门理工学院人才引进基金资助项目(YKJ10041R).

作者简介: 刘阳(1980—),女,讲师,从事生物电阻抗成像研究.E-mail:liuyang@xmut.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  

引用本文:

刘阳, 戴松世. 注入及感应电流磁共振电阻抗成像对比[J]. J4, 2011, 45(10): 1848-1854.

LIU Yang, DAI Song-shi. Comparison between injected current and induced current magnetic
resonance electrical impedance tomography. J4, 2011, 45(10): 1848-1854.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2011.10.025        https://www.zjujournals.com/eng/CN/Y2011/V45/I10/1848

[1] KWON O, WOO E J, YOON J R, et al. Magnetic resonance electrical impedance tomography (MREIT): simulation study of Jsubstitution algorithm [J]. IEEE Transactions on Biomedical Engineering, 2002, 49(2): 160-167.
[2] OH S H, LEE B I, WOO E J, et al. Conductivity and current density image reconstruction using harmonic Bz algorithm in magnetic resonance electrical impedance tomography [J]. Physics in Medicine and Biology, 2003, 48(19): 3101-3116.
[3] GAO N, ZHU S A, HE B. Use of 3D magnetic resonance electrical impedance tomography in detecting human cerebral stroke: a simulation study [J]. Journal of Zhejiang University Science B, 2005,6(5): 438-445.
[4] GAO N, ZHU S A, HE B. Estimation of electrical conductivity distribution within the human head from magnetic flux density measurement [J]. Physics in Medicine and Biology, 2005, 50(11): 2675-2687.
[5] GAO N, ZHU S A, HE B. A new magnetic resonance electrical impedance tomography (MREIT) algorithm: the RSMMREIT algorithm with applications to estimation of human head conductivity [J]. Physics in Medicine and Biology, 2006, 51(12): 3067-3083.
[6] ZPARLAK L, DER Y Z. Induced current magnetic resonanceelectrical impedance tomography [J]. Physiological Measurement, 2005, 26(2): 289-305.
[7] 刘阳,闫丹丹,朱善安,等.头部组织感应电流磁共振电阻抗成像仿真研究.中国生物医学工程学报,2009,28(2): 244-250.
LIU Yang, YAN Dandan, ZHU Shanan, et al. Simulation study on induced current magnetic resonance electrical impedance tomography of brain tissues [J]. Chinese Journal of Biomedical Engineering, 2009, 28(2): 244-250.
[8] LIU Y, ZHU S A, HE B. Induced current magnetic resonance electrical impedance tomography of brain tissues based on the Jsubstitution algorithm: a simulation study [J]. Physics in Medicine and Biology, 2009, 54(14): 4561-4573.
[9] HE B, LIAN J, SPENCER K M, et al. A cortical potential imaging analysis of the P300 and Novelty P3 components [J]. Human Brain Mapping, 2001, 12(2): 120-130.
[10] ZHANG Y C, DING L, DRONGELEN W V, et al. A cortical potential imaging study from simultaneous extraand intracranial electrical recordings by means of the finite element method [J]. NeuroImage, 2006, 31(4): 1513-1524.
[11] ZHANG Y C, DRONGELEN W V, HE B. Estimation of in vivo human braintoskull conductivity ratio with the aid of intracranial electrical simulation [J]. Applied Physics Letters, 2006, 89(22): 223903.
[12] RUSH S, DRISCOLL D A. EEG electrode sensitivity: an application of reciprocity [J]. IEEE Transactions on Biomedical Engineering, 1969, 16(1): 15-22.
[13] BIRGL , EYBOGLU B M, DER Y Z. Current constrained voltage scaled reconstruction (CCVSR) algorithm for MREIT and its performance with different probing current patterns [J]. Physics in Medicine and Biology, 2003, 48(5): 653-671.
[14] BIRGL , EYBOGLU B M, DER Y Z. Experimental results for 2D magnetic resonance electrical impedance tomography (MREIT) using magnetic flux density in one direction [J]. Physics in Medicine and Biology, 2003, 48(21): 3485-3504.
[15] IEEE std C95.6, IEEE standard for safely levels with respect to human exposure to electromagnetic fields, 03 kHz [S]. New York: IEEE, 2002.
[16] ROTH B J, SAYPOL J M, HALLERT M, et al. A theoretical calculation of the electric field induced in the cortex during magnetic stimulation [J]. Electroencephalography and Clinical Neurophysiology, 1991, 81(1): 47-56.
[17] TOFTS P S. The distribution of induced currents in magnetic stimulation of the nervous system [J]. Physics in Medicine and Biology, 1990, 35(8): 1119-1128.

[1] 刘阳,吴占雄,朱善安,贺斌. 各向异性头部组织感应电流磁共振电阻抗成像[J]. J4, 2011, 45(1): 168-172.
[2] 王启涵, 姚缨英. 电磁感应加热中控制电压的计算[J]. J4, 2010, 44(8): 1553-1557.
[3] 孟豹, 黄平捷, 叶波, 等. 脉冲涡流解析模型研究范[J]. J4, 2009, 43(09): 1621-1624.