Please wait a minute...
浙江大学学报(工学版)  2025, Vol. 59 Issue (4): 863-869    DOI: 10.3785/j.issn.1008-973X.2025.04.022
机械与能源工程     
基于流道扰流的膜蒸馏近膜界面极化现象抑制
孙佳琪(),张耀玲,郭飞*()
大连理工大学 能源与动力学院,辽宁 大连 116024
Reduction of near membrane interface polarization phenomena in membrane distillation through flow channel disturbance
Jiaqi SUN(),Yaoling ZHANG,Fei GUO*()
School of Energy and Power Engineering, Dalian University of Technology, Dalian 116024, China
 全文: PDF(1139 KB)   HTML
摘要:

近膜界面的极化现象会直接降低膜两侧蒸气压差,进而降低膜蒸馏的跨膜通量. 使用扰流柱对近膜界面料液进行非接触式扰动,研究孤立扰流柱、多扰流柱布置方式对扰流和跨膜传质的影响和机理. 实验结果表明,当料液湿度为70 ℃,流量为0.2 L/min时,流道扰流可使气隙式膜蒸馏的跨膜通量提高超过20%. 采用数值模拟方法分析不同扰流柱布置方式对近膜界面区域料液流动状态的影响以及流道沿程压力降的变化. 分析结果表明,在不明显提高流道的沿程压力降的情况下,扰流柱能够有效增强近膜界面区域料液流动的无序性,破坏和抑制膜蒸馏的极化现象.

关键词: 膜蒸馏近膜界面流道扰流极化现象跨膜通量    
Abstract:

Polarization phenomena near the membrane interface directly reduce the vapor pressure difference on both sides of the membrane, thereby decreasing the transmembrane flux of membrane distillation. The flow-disturbing pillars were used to disturb the feed flow near the membrane interface in a contactless way. The influence and mechanism of parameters such as the isolated flow-disturbing pillar and the arrangements of multiple flow-disturbing pillars on flow disturbance and transmembrane mass transfer were studied. Experimental results show that flow channel disturbance can increase the transmembrane flux of air gap membrane distillation by more than 20% when the feed temperature is 70 ℃ and the feed flow rate is 0.2 L/min. Numerical simulation was used to analyze the influence of different flow-disturbing pillar arrangements on the feed flow state near the membrane interface region, and the pressure drop variations along the flow channel were studied. Results show that the flow-disturbing pillars not only effectively enhance the disorder of the feed flow near the membrane interface, but also break and reduce the polarization phenomena of the membrane distillation, without significantly increasing the pressure drop along the flow channel.

Key words: membrane distillation    near membrane interface    flow channel disturbance    polarization phenomena    transmembrane flux
收稿日期: 2024-02-20 出版日期: 2025-04-25
CLC:  TP 393  
通讯作者: 郭飞     E-mail: sunjiaqizg@mail.dlut.edu.cn;feiguo@dlut.edu.cn
作者简介: 孙佳琪(1999—),男,硕士生,从事界面热力学研究. orcid.org/0000-0002-1552-4961.E-mail:sunjiaqizg@mail.dlut.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
孙佳琪
张耀玲
郭飞

引用本文:

孙佳琪,张耀玲,郭飞. 基于流道扰流的膜蒸馏近膜界面极化现象抑制[J]. 浙江大学学报(工学版), 2025, 59(4): 863-869.

Jiaqi SUN,Yaoling ZHANG,Fei GUO. Reduction of near membrane interface polarization phenomena in membrane distillation through flow channel disturbance. Journal of ZheJiang University (Engineering Science), 2025, 59(4): 863-869.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2025.04.022        https://www.zjujournals.com/eng/CN/Y2025/V59/I4/863

图 1  气隙式膜蒸馏实验装置及材料
图 2  流道中添加单根孤立的扰流柱对料液流动状态的影响
图 3  不同扰流柱布置方式下的近膜界面料液流动状态
图 4  不同扰流柱布置方式下的膜蒸馏跨膜通量实验结果
图 5  膜蒸馏流道设计与流道沿程压力降的关系
1 姜晓滨, 孙国鑫, 贺高红 高效膜蒸馏结晶过程的研究进展[J]. 化工学报, 2020, 71 (9): 3905- 3918
JIANG Xiaobin, SUN Guoxin, HE Gaohong Research progress of high-efficiency membrane distillation crystallization process[J]. CIESC Journal, 2020, 71 (9): 3905- 3918
2 郭智, 张新妙, 章晨林, 等 膜蒸馏过程强化及优化技术研究进展[J]. 化工进展, 2016, 35 (4): 981- 987
GUO Zhi, ZHANG Xinmiao, ZHANG Chenlin, et al Current research and technical progress in membrane distillation process intensification and optimization[J]. Chemical Industry and Engineering Progress, 2016, 35 (4): 981- 987
3 ALQSAIR U F, ALSHWAIREKH A M, ALWATBAN A M, et al Computational study of sweeping gas membrane distillation process: flux performance and polarization characteristics[J]. Desalination, 2020, 485: 114444
doi: 10.1016/j.desal.2020.114444
4 LOU J, VANNESTE J, DECALUWE S C, et al Computational fluid dynamics simulations of polarization phenomena in direct contact membrane distillation[J]. Journal of Membrane Science, 2019, 591: 117150
doi: 10.1016/j.memsci.2019.05.074
5 LOKARE O R, VIDIC R D Impact of operating conditions on measured and predicted concentration polarization in membrane distillation[J]. Environmental Science and Technology, 2019, 53 (20): 11869- 11876
doi: 10.1021/acs.est.9b04182
6 SHI D, GONG T, QING W, et al Unique behaviors and mechanism of highly soluble salt-induced wetting in membrane distillation[J]. Environmental Science and Technology, 2022, 56 (20): 14788- 14796
doi: 10.1021/acs.est.2c03348
7 YUN Y, MA R, ZHANG W, et al Direct contact membrane distillation mechanism for high concentration NaCl solutions[J]. Desalination, 2006, 188 (1/2/3): 251- 262
8 ANVARI A, AZIMI YANCHESHME A, KEKRE K M, et al State-of-the-art methods for overcoming temperature polarization in membrane distillation process: a review[J]. Journal of Membrane Science, 2020, 616: 118413
doi: 10.1016/j.memsci.2020.118413
9 SULEMAN M, ASIF M, JAMAL S A Temperature and concentration polarization in membrane distillation: a technical review[J]. Desalination and Water Treatment, 2021, 229: 52- 68
doi: 10.5004/dwt.2021.27398
10 ZHANG Z, ZHANG N, XIANG B, et al Numerical investigation on mass and heat transfer performance for novel vacuum membrane distillation modules enhanced by semicircular spacers[J]. International Journal of Thermal Sciences, 2023, 187: 108165
doi: 10.1016/j.ijthermalsci.2023.108165
11 CHANG H, HO C D, CHEN Y H, et al Enhancing the permeate flux of direct contact membrane distillation modules with inserting 3D printing turbulence promoters[J]. Membranes, 2021, 11 (4): 266
doi: 10.3390/membranes11040266
12 JEONG S, GU B, CHOI S, et al Engineered multi-scale roughness of carbon nanofiller-embedded 3D printed spacers for membrane distillation[J]. Water Research, 2023, 231: 119649
doi: 10.1016/j.watres.2023.119649
13 ZHANG Y, MU X, SUN J, et al Optimizing membrane distillation performance through flow channel modification with baffles: experimental and computational study[J]. Separations, 2023, 10 (9): 485
doi: 10.3390/separations10090485
14 ELHENAWY Y, ELMINSHAWY N A S, BASSYOUNI M, et al Experimental and theoretical investigation of a new air gap membrane distillation module with a corrugated feed channel[J]. Journal of Membrane Science, 2020, 594: 117461
doi: 10.1016/j.memsci.2019.117461
15 ZHANG Y, SUN J, GUO F Performance enhancement for membrane distillation by introducing insoluble particle fillers in the feed[J]. Desalination, 2023, 558: 116624
doi: 10.1016/j.desal.2023.116624
16 ZHAO S, FERON P H M, CHEN X, et al Gas flow enhanced mass transfer in vacuum membrane distillation[J]. Desalination, 2023, 552: 116434
doi: 10.1016/j.desal.2023.116434
17 DONG C, HUANG Y, LIN H, et al Performance intensification and anti-fouling of the two-phase flow enhanced direct contact membrane distillation for seawater desalination[J]. Desalination, 2022, 541: 116059
doi: 10.1016/j.desal.2022.116059
18 LIAO X, CHOU S, GU C, et al Engineering omniphobic corrugated membranes for scaling mitigation in membrane distillation[J]. Journal of Membrane Science, 2023, 665: 121130
doi: 10.1016/j.memsci.2022.121130
19 ZHANG Y, GUO F Mitigating near-surface polarizations in membrane distillation via membrane surface decoration[J]. Desalination, 2024, 579: 117507
doi: 10.1016/j.desal.2024.117507
20 BAZARGAN HARANDI H, HU J, ASADI A, et al Experimental and theoretical analysis of scaling mitigation for corrugated PVDF membranes in direct contact membrane distillation[J]. Journal of Membrane Science, 2023, 686: 122001
doi: 10.1016/j.memsci.2023.122001
21 段蓝翔, 陈佳明, 蔡景成, 等 基于纤维膜的膜蒸馏界面结晶及清洗再生[J]. 浙江大学学报: 工学版, 2022, 56 (10): 2104- 2108
DUAN Lanxiang, CHEN Jiaming, CAI Jingcheng, et al Interfacial crystal fouling and regeneration of fibrous membrane based membrane distillation[J]. Journal of Zhejiang University: Engineering Science, 2022, 56 (10): 2104- 2108
22 ANQI A E, ALREHILI M, USTA M, et al Numerical analysis of hollow fiber membranes for desalination[J]. Desalination, 2016, 398: 39- 51
doi: 10.1016/j.desal.2016.07.019
[1] 段蓝翔,陈佳明,蔡景成,郭飞. 基于纤维膜的膜蒸馏界面结晶及清洗再生[J]. 浙江大学学报(工学版), 2022, 56(10): 2104-2108.