Please wait a minute...
浙江大学学报(工学版)  2024, Vol. 58 Issue (1): 169-175    DOI: 10.3785/j.issn.1008-973X.2024.01.018
能源工程、环境工程     
双温区脉管制冷机的制冷量主动调控策略
惠贺军1,2(),吴亦农1,2,宋键镗1,殷旺1,2,蒋珍华1,2,刘少帅1,2,*()
1. 中国科学院上海技术物理研究所,上海 200083
2. 中国科学院大学,北京 100049
Active control strategy of cooling capacity based on pulse tube refrigerator of dual temperature zones
Hejun HUI1,2(),Yinong WU1,2,Jiantang SONG1,Wang YIN1,2,Zhenhua JIANG1,2,Shaoshuai LIU1,2,*()
1. Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, China
2. University of Chinese Academy of Sciences, Beijing 100049, China
 全文: PDF(1317 KB)   HTML
摘要:

针对空间探测中须在双温区提供不同制冷量的新需求,提出利用声功回收主动调相器对双温区制冷量进行主动调控的方法. 研究分析高温区调相器活塞运动特性对双温区冷指阻抗的影响,得到调相器对双温区冷指声功率分配及回热器效率的影响特性,实现80 K和40 K双温区制冷量主动调控. 数值计算结果显示,调相器相位差对高温区制冷量影响较大,调相器振幅和相位差对低温区制冷量均有明显的影响. 实验结果表明,采用基于主动控制调相器活塞运动特性的调节策略,80 K温区制冷量可以在9.2~23.7 W内主动调节,40 K温区制冷量可以在3.2~4.5 W内主动调节.

关键词: 脉管制冷机主动调相双制冷温区阻抗分析调控策略    
Abstract:

A method was proposed where an active phase shifter with acoustic power recovery was applied to actively control their cooling supplies there in response to the new requirement of variable cooling supplies in dual temperature zones in space exploration. The influence characteristics on the distribution of the cold finger acoustic power and the efficiency of the regenerator in the dual temperature zones were obtained by analyzing the influence of the piston movement characteristics of the phase shifter in the high-temperature zone on the impedance of the cold fingers in the dual-temperature zones. The cryocooler can actively supply the desired cooling powers (@80 K and 40 K), respectively. The numerical calculation results show that the phase difference of the phase shifter piston mainly influences the cooling capacity in the high-temperature zone. The amplitude and phase difference of the phase shifter piston significantly affects the cooling capacity in the low-temperature zone. The experimental results show that the cooling capacity in the 80 K temperature zone can be actively adjusted in the range of 9.2 W to 23.7 W with the active control of the phase shifter, and the cooling capacity in the 40 K temperature zone can be actively adjusted in the range of 3.2 W to 4.5 W.

Key words: pulse tube refrigerator    active phase shifter    dual cooling temperature zones    impedance analysis    control strategy
收稿日期: 2023-03-22 出版日期: 2023-11-07
CLC:  TK 11  
基金资助: 国家自然科学基金资助项目(51806231);中国科学院战略性先导科技专项(B类)项目(XDB35000000,XDB35040102)
通讯作者: 刘少帅     E-mail: hhun@mail.ustc.edu.cn;liushaoshuai@mail.sitp.ac.cn
作者简介: 惠贺军(1997—),男,博士生,从事脉管制冷技术的研究. orcid.org/0009-0007-1698-3194. E-mail: hhun@mail.ustc.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
惠贺军
吴亦农
宋键镗
殷旺
蒋珍华
刘少帅

引用本文:

惠贺军,吴亦农,宋键镗,殷旺,蒋珍华,刘少帅. 双温区脉管制冷机的制冷量主动调控策略[J]. 浙江大学学报(工学版), 2024, 58(1): 169-175.

Hejun HUI,Yinong WU,Jiantang SONG,Wang YIN,Zhenhua JIANG,Shaoshuai LIU. Active control strategy of cooling capacity based on pulse tube refrigerator of dual temperature zones. Journal of ZheJiang University (Engineering Science), 2024, 58(1): 169-175.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2024.01.018        https://www.zjujournals.com/eng/CN/Y2024/V58/I1/169

图 1  单压缩机驱动的双温区功回收主动调相脉管制冷机的示意图
制冷机部件 参数 参数值
压缩机 活塞直径 38 mm
高温区冷指 回热器尺寸
(长度×直径)
62 mm×32 mm
回热器填料 350#不锈钢丝网
脉冲管尺寸 70 mm×16 mm
低温区冷指 回热器尺寸 78 mm×26 mm
回热器填料 350#和400#不锈钢丝网混合填充
脉冲管尺寸 86 mm×12 mm
高温区调相器 活塞直径 22 mm
低温区调相器 活塞直径 18 mm
表 1  制冷机的主要结构参数
图 2  高温区调相器活塞运动特性对双温区冷指入口阻抗幅值的影响
图 3  高温区调相器活塞运动特性对双温区冷指入口阻抗相位的影响
图 4  高温区调相器活塞运动特性对冷指声功分配的影响
图 5  高温区调相器对双冷指冷端阻抗相位的影响
图 6  高温区调相器活塞运动特性对双冷指回热器效率的影响
图 7  高温区调相器活塞运动特性对双温区制冷量和制冷效率的影响
图 8  双温区脉管制冷机的实物图
图 9  双温区制冷量主动调控的实验结果
图 10  压缩机输入电功率与输出声功率随高温区调相器的变化情况
1 JACO C, NGUYEN T, TWARD E. High capacity two-stage coaxial pulse tube cooler [C]// Proceedings of the Transactions of the Cryogenic Engineering Conference. Chattanooga: AIP, 2008: 530-537.
2 CHAO Y, WANG B, LI H, et al A two-stage thermally-coupled pulse tube cryocooler working at 35 K for space application[J]. Acta Astronautica, 2022, 191 (2): 193- 203
3 朱海峰, 吴亦农, 蒋燕阳, 等 单压缩机驱动双冷指阻抗特性研究[J]. 工程热物理学报, 2017, 38 (6): 1166- 1170
ZHU Hai-feng, WU Yi-nong, JIANG Yan-yang, et al Investigation on impedance character of two cold fingers driven by one compressor[J]. Journal of Engineering Thermophysics, 2017, 38 (6): 1166- 1170
4 ABOLGHASEMI M A, LIANG K, STONE R, et al Stirling pulse tube cryocooler using an active displacer[J]. Cryogenics, 2018, 96 (8): 53- 61
5 SWIFT G W, GARDNER D L, BACKHAUS S Acoustic recovery of lost power in pulse tube refrigerators[J]. The Journal of the Acoustical Society of America, 1999, 105 (2): 711- 724
doi: 10.1121/1.426262
6 ZHU S, NOGAWA M Pulse tube stirling machine with warm gas-driven displacer[J]. Cryogenics, 2010, 50 (5): 320- 330
doi: 10.1016/j.cryogenics.2010.01.011
7 ZHI X, QIU L, PFOTENHAUER J M, et al Refrigeration mechanism of the gas parcels in pulse tube cryocoolers under different phase angles[J]. International Journal of Heat and Mass Transfer, 2016, 103 (12): 382- 389
8 WANG X, ZHANG Y, LI H, et al A high efficiency hybrid stirling-pulse tube cryocooler[J]. AIP Advances, 2015, 5 (3): 037127
doi: 10.1063/1.4915900
9 LIN Y, GUO Z, GUO Z, et al Experimental investigation of the connecting tube effect on a step displacer type two stage pulse tube refrigerator[J]. Applied Thermal Engineering, 2020, 173 (10): 115229
10 WANG L, WU M, SUN X, et al A cascade pulse tube cooler capable of energy recovery[J]. Applied Energy, 2016, 164 (4): 572- 578
11 XU J, HU J, HU J, et al Cascade pulse-tube cryocooler using a displacer for efficient work recovery[J]. Cryogenics, 2017, 86 (6): 112- 117
12 HUI H, SONG J, LIU S, et al Energy conversion efficiency improvement of a stirling type PTR for dual temperature cooling by adopting two active work-recovery phase shifters[J]. International Journal of Refrigeration, 2023, 146 (2): 452- 461
13 LIU S S, CHEN X, ZHANG A K, et al Investigation of the inertance tube of a pulse tube refrigerator operating at high temperatures[J]. Energy, 2017, 123 (6): 378- 385
[1] 甘智华,吴英哲,袁园,邱利民,张学军,张小斌,徐旭. 120 Hz单级脉管制冷机理论与实验[J]. J4, 2011, 45(11): 2014-2019.
[2] 甘智华,范炳燕,陈杰,等. 35K两级高频脉管制冷研究:Ⅱ.实验验证[J]. J4, 2009, 43(8): 1454-1457.
[3] 李卓裴,邱利民,刘国军,等. 热声发动机驱动的脉管制冷机模拟及实验研究[J]. J4, 2009, 43(8): 1458-1462.
[4] 张小斌 邱利民 甘智华. 双向进气型脉管制冷机完整线性模型[J]. J4, 2008, 42(5): 826-829.
[5] 张小斌 邱利民 甘智华. 冷端气库型脉管制冷机性能分析[J]. J4, 2007, 41(4): 598-602.
[6] 汤珂 陈国邦 包锐 贾正中. 负载阻抗对热声发动机性能影响分析[J]. J4, 2006, 40(10): 1792-1796.
[7] 孙大明 邱利民 谭永翔 严伟林 陈萍 陈国邦. 新型热声发动机驱动的脉管制冷机实验研究[J]. J4, 2005, 39(3): 373-376.