Please wait a minute...
浙江大学学报(工学版)  2023, Vol. 57 Issue (9): 1746-1755    DOI: 10.3785/j.issn.1008-973X.2023.09.006
土木工程、水利工程     
大跨悬索桥主缆抗火性能及其防护
李雪红1(),雷语璇1,赵军2,郭志明3,于俊杰4,徐秀丽1,*()
1. 南京工业大学 土木工程学院,江苏 南京 211816
2. 江苏法尔胜缆索有限公司,江苏 江阴 214445
3. 南京市公共工程建设中心,江苏 南京 210019
4. 中铁大桥勘测设计院集团有限公司华东分公司,江苏 南京 210031
Fire resistance performance and protection of long-span suspension bridge main cable
Xue-hong LI1(),Yu-xuan LEI1,Jun ZHAO2,Zhi-ming GUO3,Jun-jie YU4,Xiu-li XU1,*()
1. College of Civil Engineering, Nanjing Tech University, Nanjing 211816, China
2. Jiangsu FaErSheng Cable Limited Company, Jiangyin 214445, China
3. Nanjing Public Engineering Construction Center, Nanjing 210019, China
4. East China Branch of China Railway Major Bridge Reconnaissance and Design Institute Limited Company, Nanjing 210031, China
 全文: PDF(4116 KB)   HTML
摘要:

为了分析主缆的抗火性能并提出适宜的抗火防护方案,基于实际工程,采用油罐车燃烧火灾模型计算方法,分别从油罐车火灾燃烧的形式、火灾发生的位置、火灾燃烧的状态等方面进行对比分析,确定悬索桥最不利火灾场景为无风工况+油罐火灾+顶面和近主缆侧面燃烧+跨中靠近吊索位置. 采用Ansys软件分析最不利火灾场景下主缆的温度分布及耐火极限,得到主缆的耐火极限为48 min,最大失效厚度为90 mm. 通过对各类防火材料分析和调研,提出高硅氧复合材料防火结构;在高温试验60 min后,试件防火结构内侧温度为484 ℃,压缩后的防护结构的抗火性能略有提升. 基于试验结果并结合数值模拟,得到10 mm厚高硅氧复合防火结构;该结构可以满足在火灾发生后60 min主缆外表面温度不超过300 ℃的抗火设计目标.

关键词: 悬索桥主缆油罐车火灾最不利火灾场景空气升温曲线抗火性能抗火防护目标防护方案    
Abstract:

In order to analyze the fire resistance performance of the main cable and to propose the appropriate fire resistance protection scheme, based on the actual project, the calculation method for tank truck fire model was adopted to make a comparative analysis from the aspects of the tank truck fire burning form, the fire location and the fire burning state. The most unfavorable fire scenario of a suspension bridge was determined as windless condition+oil tank fire+top surface and near main cable side combustion+mid-span near sling position. The Ansys software was used to analyze the temperature profile and the fire resistance limits of the main cable in the most unfavorable fire scenarios. The fire resistance limit of the main cable was 48 minutes and the maximum failure thickness was 90 mm. Through the analysis and the investigation of various fireproof materials, a fireproof structure of high-silica composite material was proposed. After 60 min of an elevated temperature test, the inner temperature of the fireproof structure of the specimen was 484 ℃, and the fire resistance was slightly improved after the compression of the protective structure. Based on the test results and the numerical simulation, a 10 mm thick high-silica composite material fireproof structure was obtained. The obtained structure could meet the fire resistance design goal that the outer surface temperature of the main cable should not exceed 300 ℃ after 60 min of a fire.

Key words: main cables for suspension bridge    tanker fire    most unfavorable fire scenario    air heating curve    fire resistance    fire protection target    protection scheme
收稿日期: 2022-11-13 出版日期: 2023-10-16
CLC:  U 447  
基金资助: 江苏省交通运输科技项目(2021QD06);江苏省研究生实践创新计划(SJCX22_0464)
通讯作者: 徐秀丽     E-mail: lixuehongnj@163.com;njxuxiuli@163.com
作者简介: 李雪红(1974—),女,教授,博士,从事钢结构桥梁研究. orcid.org/0000-0003-1345-4063. E-mail: lixuehongnj@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
李雪红
雷语璇
赵军
郭志明
于俊杰
徐秀丽

引用本文:

李雪红,雷语璇,赵军,郭志明,于俊杰,徐秀丽. 大跨悬索桥主缆抗火性能及其防护[J]. 浙江大学学报(工学版), 2023, 57(9): 1746-1755.

Xue-hong LI,Yu-xuan LEI,Jun ZHAO,Zhi-ming GUO,Jun-jie YU,Xiu-li XU. Fire resistance performance and protection of long-span suspension bridge main cable. Journal of ZheJiang University (Engineering Science), 2023, 57(9): 1746-1755.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2023.09.006        https://www.zjujournals.com/eng/CN/Y2023/V57/I9/1746

图 1  南京市仙新路过江通道跨江大桥的总体布置图
图 2  加劲梁标准横断面布置图
图 3  全桥有限元模型
图 4  主缆挤圆后截面
图 5  火灾动力学模拟工具中的火灾计算模型
图 6  各燃烧面热释放速率曲线
燃烧面 E/kJ QP/MW t1/s E1/kJ
顶面 1.68×109 59.2 562 $1.1 \times {10^7}$
近主缆侧面 1.68×109 47.36 502 $7.9 \times {10^6}$
远离主缆侧面 1.68×109 47.36 502 $7.9 \times {10^6}$
首端面 1.68×109 11.84 251 $9.9 \times {10^5}$
尾端面 1.68×109 11.84 251 $9.9 \times {10^5}$
表 1  油罐火灾关键参数
参数 数值
泄漏孔半径r/m 0.03
燃油泄漏速率QLiq/(kg·s?1) 9.45
泄漏燃烧油池最大直径Dm/m 14.8
燃烧油池扩散至最大直径时间tk/s 213
燃烧油池直径扩大速度Vp/(m·s?1) 0.069
泄漏油池火的燃烧时间tmax/s 4128
表 2  油池火灾关键参数
图 7  油罐车火灾的空气温度分布对比
图 8  油罐车边缘离主缆不同水平距离时空气温度沿高度变化曲线
图 9  最不利火灾场景下空气温度云图
图 10  最不利火灾场景下空气温度随高度的变化曲线
图 11  3种升温曲线的对比图
图 12  主缆截面温度沿径向分布曲线
图 13  不同高度主缆截面平均温度随时间的变化曲线
图 14  主缆截面平均温度随高度的变化曲线
图 15  主缆有限元模型
图 16  最不利火灾场景下未防护主缆的2种时程曲线
图 17  试件平面图、测点布置图和加工后试件外观
图 18  材料对比试验炉内升温曲线
图 19  防护材料对比试验后的试件
图 20  不同方案各测点温度时程曲线
图 21  主揽抗火试验炉内升温曲线
图 22  防护层压缩影响效应试验前后的试件形态
图 23  60 min时试件各测点温度
图 24  主缆直径影响效应试验前后的试件形态
图 25  试件直径和截面形状系数与温度相关关系曲线
图 26  主缆最外侧温度随主缆直径的变化曲线
图 27  主缆防护后最外侧温度的时程曲线
1 张岗, 贺拴海, 侯炜, 等 预应力混凝土桥梁抗火研究综述[J]. 长安大学学报: 自然科学版, 2018, 38 (6): 1- 10
ZHANG Gang, HE Shuan-hai, HOU Wei, et al Review on fire resistance of prestressed-concrete bridge[J]. Journal of Chang'an University, 2018, 38 (6): 1- 10
2 张岗, 贺拴海, 宋超杰, 等 钢结构桥梁抗火研究综述[J]. 中国公路学报, 2021, 34 (1): 1- 11
ZHANG Gang, HE Shuan-hai, Song Chao-jie, et al Review on fire resistance of steel structural bridge girders[J]. China Journal of Highway and Transport, 2021, 34 (1): 1- 11
doi: 10.3969/j.issn.1001-7372.2021.01.001
3 崔闯, 杨正祥, 王昊, 等 桥梁抗爆与抗火2020年度研究进展[J]. 土木与环境工程学报(中英文), 2021, 43 (Suppl.1): 207- 221
CUI Chuang, YANG Zheng-xiang, WANG Hao, et al State-of-the-art review of explosion and fire resistance of bridges in 2020[J]. Journal of Civil and Environmental Engineering, 2021, 43 (Suppl.1): 207- 221
4 王莹, 刘沐宇 大跨径悬索桥缆索抗火模拟方法[J]. 中南大学学报: 自然科学版, 2016, 47 (6): 2091- 2099
WANG Ying, LIU Mu-yu Fire resistance simulation of main cable and sling for long-span suspension bridge[J]. Journal of Central South University: Science and Technology, 2016, 47 (6): 2091- 2099
5 李艳, 汪剑, 周国华 大跨径悬索桥缆索体系抗火设计研究[J]. 公路, 2018, 63 (5): 94- 100
LI Yan, WANG Jian, ZHOU Guo-hua Research on fire resistance design of cable system for long-span suspension bridge[J]. Highway, 2018, 63 (5): 94- 100
6 中华人民共和国住房和城乡建设部. 建筑钢结构防火技术规范: GB 51249—2017[S]. 北京: 中国计划出版社, 2017.
7 KODUR V, AZIZ E, DWAIKAT M Evaluating fire resistance of steel girders in bridges[J]. Journal of Bridge Engineering, 2013, 18: 633- 643
doi: 10.1061/(ASCE)BE.1943-5592.0000412
8 MA R, CUI C, MA M, et al Numerical simulation and simplified model of vehicle-induced bridge deck fire in the full-open environment considering wind effect[J]. Structure and Infrastructure Engineering, 2021, 17 (12): 1698- 1709
doi: 10.1080/15732479.2020.1832535
9 LEE J, CHOI K, YOON J, et al. Numerical analysis-based structural behavior assessment of a cable-stayed bridge undertakers fire [J]. Structure and Infrastructure Engineering, 2022: 1-18.
10 ANSYS. APDL coupled-field analysis guide [EB/OL]. (2011-10-10)[2022-09-28]. https://www.ansys.com.
11 孙训方. 材料力学[M]. 北京: 高等教育出版社, 2019.
12 KOUADRI-HENNI A, SEANG C, MALARD B, et al Residual stresses induced by laser welding process in the case of a dual-phase steel DP600: simulation and experimental approaches[J]. Materials and Design, 2017, 123: 89- 102
doi: 10.1016/j.matdes.2017.03.022
13 李雪红, 杨星墀, 徐秀丽, 等 大跨桥梁油罐车燃烧火灾模型计算方法研究[J]. 中国公路学报, 2022, 35 (6): 147- 157
LI Xue-hong, YANG Xing-chi, XU Xiu-li, et al Research on calculation method for tank truck fire model on large-span bridge[J]. China Journal of Highway and Transport, 2022, 35 (6): 147- 157
doi: 10.3969/j.issn.1001-7372.2022.06.013
14 孙亚宁, 高威, 刘乃安, 等 矩形火羽流燃烧特征的实验研究[J]. 燃烧科学与技术, 2020, 26 (6): 507- 511
SUN Ya-ning, GAO Wei, LIU Nai-an, et al Experimental study on characteristics of flame plume[J]. Journal of Combustion Science and Technology, 2020, 26 (6): 507- 511
15 高云骥, 朱国庆 火羽流轴向温度大涡模拟与实验比较[J]. 消防科学与技术, 2014, 33 (8): 857- 859
GAO Yun-ji, ZHU Guo-qing Comparison of large eddy simulation and experimental study on axial temperature of flame plume[J]. Fire Science and Technology, 2014, 33 (8): 857- 859
doi: 10.3969/j.issn.1009-0029.2014.08.002
16 JALURIA Y, COOPER L Y Negatively buotant wall flows generated in enclosure fires[J]. Progress in Energy and Combustion Science, 1989, 15 (2): 159- 182
doi: 10.1016/0360-1285(89)90014-2
17 LU J, LIU H B, CHEN Z H Post-fire mechanical properties of low-relaxation hot-dip galvanized prestressed steel wires[J]. Journal of Constructional Steel Research, 2017, 136: 110- 127
doi: 10.1016/j.jcsr.2017.05.012
18 杨冬晖, 李猛, 尚坤 航天服隔热材料技术研究进展[J]. 航空材料学报, 2016, 36 (2): 87- 96
YANG Dong-hui, LI Meng, SHANG Kun Development of thermal insulation materials technology for spacesuit[J]. Journal of Aeronautical Materials, 2016, 36 (2): 87- 96
doi: 10.11868/j.issn.1005-5053.2016.2.014
19 朱京城, 张嘉琪 火灾救生舱多层隔热材料降温效果试验研究[J]. 中国安全科学学报, 2019, 29 (9): 90- 95
ZHU Jing-cheng, ZHANG Jia-qi Study on cooling effects of insulation layers of life rescue capsule[J]. China Safety Science Journal, 2019, 29 (9): 90- 95
doi: 10.16265/j.cnki.issn1003-3033.2019.09.014
20 GORLE B S K, SMIRNOVA I, DRAGAN M, et al Crystallization under supercritical conditions in aerogels[J]. Journal of Supercritical Fluids The, 2008, 44: 78- 84
doi: 10.1016/j.supflu.2007.08.004
[1] 蒋翔, 童根树, 张磊. 耐火钢-混凝土组合梁抗火性能试验[J]. 浙江大学学报(工学版), 2016, 50(8): 1463-1470.