Please wait a minute...
浙江大学学报(工学版)  2022, Vol. 56 Issue (7): 1375-1384    DOI: 10.3785/j.issn.1008-973X.2022.07.013
土木工程、水利工程、交通工程     
珠江河网典型横向汊道水面线演变及成因
王博芝1,2,3,4(),李博1,2,3,4,魏稳1,2,3,4,欧素英1,2,3,4,蔡华阳1,2,3,4,*(),杨清书1,2,3,4
1. 中山大学 河口海岸研究所,广东 广州 510275
2. 河口水利技术国家地方联合工程实验室,广东 广州 510275
3. 广东省海岸与岛礁工程技术研究中心,广东 广州 510275
4. 南方海洋科学与工程广东省实验室(珠海),广东 珠海 519000
Water surface profile dynamics and underlying mechanism of typical transverse channels in Pearl River channel network
Bo-zhi WANG1,2,3,4(),Bo LI1,2,3,4,Wen WEI1,2,3,4,Su-ying OU1,2,3,4,Hua-yang CAI1,2,3,4,*(),Qing-shu YANG1,2,3,4
1. Institute of Estuarine and Coastal Research, Sun Yat-sen University, Guangzhou 510275, China
2. State and Local Joint Engineering Laboratory of Estuarine Hydraulic Technology, Guangzhou 510275, China
3. Guangdong Provincial Engineering Research Center of Coasts, Islands and Reefs, Guangzhou 510275, China
4. Southern Laboratory of Ocean Science and Engineering (Zhuhai), Zhuhai 519000, China
 全文: PDF(1594 KB)   HTML
摘要:

以珠江河网中下游腹地的“四横两纵”横向汊道体系为研究靶区,采用余水位曲率、潮波衰减率公式及双累积曲线法,分析1960—2016年洪枯季的水面线演变过程及其与余水位曲率变化的对应关系,探究与之密切相关的人类活动影响机制. 结果表明,1993年前人类活动以联围筑闸为主,此时水面线在中下游“南沙-容奇”洪季呈下凹型,枯季呈微上凸型(洪季曲率为正,均值为1.50×10?10 m?1,枯季曲率为?6.64×10?12 m?1). 在中上游“板沙尾-南华”洪枯季均为下凹型(曲率均为正,洪季均值为1.92×10?10 m?1,枯季为5.37×10?12 m?1). 1993年后,中下游河道受人为采砂和航道疏浚的影响,导致水位降低. 围垦叠加海平面上升影响导致口门水位抬升,使得水面线在洪季的下凹程度增大(曲率为正,均值为3.98×10?10 m?1),枯季由微凸变凹(曲率为正,均值为1.85×10?10 m?1). 中上游由于强烈的河道采沙和疏浚,导致中游来流量增大,另叠加桥梁建设对径潮流的阻滞作用,因而水面线在洪季和枯季均转为上凸型(曲率均为负,洪、枯季均值分别为?6.87×10?10和?0.55×10?10 m?1).

关键词: 余水位坡度余水位曲率潮波衰减率水面线人类活动    
Abstract:

The “four horizontal and two vertical” transverse channel system in the Pearl River channel networks was selected as the study area. The dynamics of the water surface profiles of the “four horizontal and two vertical” system during the flood season and dry season from 1960 to 2016 was analyzed by using the approaches relating to curvature, tidal damping and double mass curve. The underlying mechanism of human interventions was analyzed. Results showed that human activities before 1993 were mainly related to building sluices. Then the water surface profiles were mainly concave in the middle and lower reaches ("Nansha-Rongqi") during the flood season, while were slightly convex during the dry season (the curvature during the flood season is positive with mean value of 1.50×10?10 m?1, while during the dry season being ?6.64×10 ?12 m?1). The water surface profiles during the flood and dry seasons were generally concave in the middle and upper reaches ("Banshawei-Nanhua") (curvatures are positive, with the mean values during the flood and dry seasons being 1.92×10?10 m?1 and 5.37×10?12 m?1, respectively). After 1993, the middle and lower reaches of the system were considerably affected by sand excavation and channel dredging, leading to a decrease in water level. The water level near the outlet was increased due to the combined impacts from both sea level rising and land reclamations. The degree of concave of the water surface profiles during the flood season was slightly increased (the curvature is positive with the mean value being 3.98×10?10 m?1), while the profiles changed from slightly convex to concave during the dry season (curvature is positive with a mean value of 1.85×10?10 m?1). The flow in the middle reaches increased due to the intense sand excavation and dredging activities in the middle and upper reaches of the system. The bridge construction and other obstacles exerted a negative impact on the transport of river and tidal flows. The water surface profiles became convex during both the flood season and the dry seasons (curvatures were negative with mean values of the flood and dry seasons being ?6.87×10 ?10 m?1 and ?0.55×10 ?10 m?1, respectively).

Key words: residual water level slope    residual water level curvature    tidal damping rate    water surface profile    human activity
收稿日期: 2021-07-10 出版日期: 2022-07-26
CLC:  P 343  
基金资助: 国家重点研发计划资助项目(2016YFC0402600);国家自然科学基金资助项目(51979296)
通讯作者: 蔡华阳     E-mail: wangbzh5@mail2.sysu.edu.cn;caihy7@mail.sysu.edu.cn
作者简介: 王博芝(1995—),女,博士生,从事河口海岸动力学的研究. orcid.org/0000-0002-0505-8506.E-mail: wangbzh5@mail2.sysu.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
王博芝
李博
魏稳
欧素英
蔡华阳
杨清书

引用本文:

王博芝,李博,魏稳,欧素英,蔡华阳,杨清书. 珠江河网典型横向汊道水面线演变及成因[J]. 浙江大学学报(工学版), 2022, 56(7): 1375-1384.

Bo-zhi WANG,Bo LI,Wen WEI,Su-ying OU,Hua-yang CAI,Qing-shu YANG. Water surface profile dynamics and underlying mechanism of typical transverse channels in Pearl River channel network. Journal of ZheJiang University (Engineering Science), 2022, 56(7): 1375-1384.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2022.07.013        https://www.zjujournals.com/eng/CN/Y2022/V56/I7/1375

图 1  余水位坡度、潮波衰减率绝对值与流量的累积关系
变量 时间段 a b 贡献率/%
Q-S 1960—1992 1.00 1.03 109
Q-S 1993—2016 0.85 0.71 41
Q-|δ| 1960—1992 1.50 0.97 138
Q-|δ| 1993—2016 0.00 2.73 41
表 1  双累积曲线拟合参数及Q对S或|δ|的贡献率
图 2  1993年前、后同流量条件下余水位坡度与潮波衰减率的变化
图 3  “四横两纵”洪枯季余水位及潮差时空变化
图 4  突变前、后余水位坡度与潮波衰减率随三水和马口总流量的变化
图 5  “四横两纵”余水位曲率在不同河段的洪枯季及全年平均变化
图 6  1993年前、后的“四横两纵”洪枯季水面线形态变化
河道 Wmean/m Dmean/m r V/(万m3·a?1 v/(cm·a?1
80年代 1999年
容桂水道 ?26 2.455 3.17 2.52 ?197.92 ?15.75
洪奇门水道 ?57 1.94 5.19 3.84 ?104.52 ?10
上横沥 ?25 0.96 3.40 2.83 ?13.29 ?3.7
下横沥 ?5 0.46 2.06 1.96 ?7.91 ?2.1
蕉门水道 ?83 0.31 4.90 4.49 20.62 1.6
凫洲水道 ?10 0.55 6.84 6.21 ?30.32 ?3.9
表 2  “四横两纵” 20世纪80与90年代沿程河道的冲淤变化[28]
图 7  1993年前、后洪季“四横两纵”沿程站点的横断面变化
1 刘俊勇 珠江三角洲河网主要节点分类与作用分析[J]. 人民珠江, 2014, 35 (6): 48- 54
LIU Jun-yong Classification and dynamics analysis of main nodes of river channel networks in the Pearl River Delta[J]. Pearl River, 2014, 35 (6): 48- 54
doi: 10.3969/j.issn.1001-9235.2014.06.015
2 唐亦汉, 陈晓宏, 邓攀攀 气候变化下珠江三角洲网河区洪潮耦合高水位的集中期特征及变异规律[J]. 水文, 2017, 37 (3): 42- 47
TANG Yi-han, CHEN Xiao-hong, DENG Pan-pan High water level seasonality under influence of changing climate driven flood-tide coupling mechanism: a case study of Pearl River Delta[J]. Journal of China Hydrology, 2017, 37 (3): 42- 47
doi: 10.3969/j.issn.1000-0852.2017.03.007
3 王博芝, 杨昊, 欧素英, 等 珠江河网横向汊道水面线演变过程及原因探讨: 以东平水道为例[J]. 热带地理, 2021, 41 (2): 410- 422
WANG Bo-zhi, YANG Hao, OU Su-ying, et al Water surface profile dynamics and underlying mechanism of transverse channel in Pearl River channel networks: a case study of the Dongping Channel[J]. Tropical Geography, 2021, 41 (2): 410- 422
4 BUSCHMAN F A, HOITINK A J F, VAN DER VEGT M, et al Subtidal water level variation controlled by river flow and tides[J]. Water Resources Research, 2009, 45 (10): 5803- 5804
5 SASSI M G, HOITINK A J F River flow controls on tides and tide-mean water level profiles in a tidal freshwater river[J]. Journal of Geophysical Research: Oceans, 2013, 118 (9): 4139- 4151
doi: 10.1002/jgrc.20297
6 SASSI M G, HOITINK A J F, DE BRYE B, et al Tidal impact on the division of river discharge over distributary channels in the Mahakam Delta[J]. Ocean Dynamics, 2011, 61 (12): 2211- 2228
doi: 10.1007/s10236-011-0473-9
7 LIU C, YU M, JIA L, et al Impacts of physical alterations on salt transport during the dry season in the Modaomen Estuary, Pearl River Delta, China[J]. Estuarine, Coastal and Shelf Science, 2019, 227: 1- 14
8 ZHANG W, RUAN X, ZHENG J, et al Long-term change in tidal dynamics and its cause in the Pearl River Delta, China[J]. Geomorphology, 2010, 120 (3/4): 209- 223
9 陈晓宏, 陈永勤 珠江三角洲网河区水文与地貌特征变异及其成因[J]. 地理学报, 2002, 57 (4): 429- 436
CHEN Xiao-hong, CHEN Yong-qin Hydrological change and its causes in the river network of the Pearl River Delta[J]. Acta Geographica Sinica, 2002, 57 (4): 429- 436
doi: 10.3321/j.issn:0375-5444.2002.04.007
10 彭静, 廖文根, 禹雪中 珠江三角洲腹地洪水位异常变化及成因分析[J]. 自然灾害学报, 2004, 13 (1): 50- 54
PENG Jing, LIAO Wen-gen, YU Xue-zhong Abnormal change of flood water level in hinterland of Pearl River Delta and its cause analysis[J]. Journal of Natural Disasters, 2004, 13 (1): 50- 54
doi: 10.3969/j.issn.1004-4574.2004.01.008
11 易小兵, 王世俊, 李春初 珠江河口界面特征与河口管理理念[J]. 海洋学研究, 2008, 26 (4): 86- 92
YI Xiao-bing, WANG Shi-jun, LI Chun-chu Estuary boundary characteristics of the Pearl River Estuary and their effects on the management idea[J]. Journal of Marine Sciences, 2008, 26 (4): 86- 92
doi: 10.3969/j.issn.1001-909X.2008.04.013
12 穆兴民, 张秀勤, 高鹏, 等 双累积曲线方法理论及在水文气象领域应用中应注意的问题[J]. 水文, 2010, 30 (4): 47- 51
MU Xing-min, ZHANG Xiu-qin, GAO Peng, et al Theory of double mass curves and its applications in hydrology and meteorology[J]. Journal of China Hydrology, 2010, 30 (4): 47- 51
doi: 10.3969/j.issn.1000-0852.2010.04.011
13 WANG H, YANG Z, WANG Y, et al Reconstruction of sediment flux from the Changjiang (Yangtze River) to the sea since the 1860s[J]. Journal of Hydrology, 2008, 349 (3/4): 318- 332
14 YANG H, ZHANG X, CAI H, et al Seasonal changes in river-tide dynamics in a highly human-modified estuary: Modaomen Estuary case study[J]. Marine Geology, 2020, 427: 1- 11
15 GAO P, LI P, ZHAO B, et al Use of double mass curves in hydrologic benefit evaluations[J]. Hydrological Processes, 2017, 31 (26): 4639- 4646
doi: 10.1002/hyp.11377
16 HU C, WANG Y, GUAN X, et al The causes of runoff variation based on double cumulative curve analysis method[J]. Journal of Water Resources Research, 2012, 1 (4): 204- 210
17 黎子浩 珠江三角洲联围筑闸对水流及河床演变的影响[J]. 热带地理, 1985, 2 (2): 99- 107
LI Zi-hao The effects of united embankments on the flow shift and channel changes in the Zhujiang Delta[J]. Tropical Geography, 1985, 2 (2): 99- 107
18 王廷华 珠江三角洲水位变化趋势及其影响分析[J]. 人民珠江, 1998, (6): 38- 41
WANG Ting-hua Analysis of the trend of water level change in Pearl River Delta and its effects[J]. Pearl River, 1998, (6): 38- 41
19 乔彭年 珠江三角洲河道冲淤特性的初步分析(上)[J]. 人民珠江, 1984, (5): 9- 18
QIAO Peng-nian Preliminary analysis of scouring and silting characteristics of rivers in the Pearl River Delta (Part 1)[J]. Pearl River, 1984, (5): 9- 18
20 刘俊勇 珠江三角洲河网主要汊道分洪输沙作用研究[J]. 人民珠江, 2014, 35 (3): 17- 21
LIU Jun-yong Study on flood diversion and sediment transport of main branches of river channel networks in the Pearl River Delta[J]. Pearl River, 2014, 35 (3): 17- 21
doi: 10.3969/j.issn.1001-9235.2014.03.006
21 董德化, 何焯霞, 鲍厚群, 等 洪奇沥口门整治探讨[J]. 人民珠江, 1986, (2): 26- 31
DONG De-hua, HE Zhuo-xia, BAO Hou-qun, et al Discussion on regulation of Hongqili outlet[J]. Pearl River, 1986, (2): 26- 31
22 杨清书, 罗章仁, 张修杰 珠江三角洲近几十年水位变化趋势研究[J]. 热带海洋, 1998, 17 (2): 9- 14
YANG Qing-shu, LUO Zhang-ren, ZHANG Xiu-jie Secular trend of water level change in Zhujiang River Delta in recent decades[J]. Tropic Oceanology, 1998, 17 (2): 9- 14
23 罗章仁 人类活动引起的珠江三角洲网河和河口效应[J]. 海洋地质动态, 2004, 20 (7): 35- 36
LUO Zhang-ren River channel networks and estuarine effects in the Pearl River Delta caused by human activities[J]. Marine Geology Letters, 2004, 20 (7): 35- 36
doi: 10.3969/j.issn.1009-2722.2004.07.008
24 杨明远, 任杰 珠江三角洲径-潮动力数值模拟与特征分析[J]. 海洋工程, 2008, 26 (4): 117- 124
YANG Ming-yuan, REN Jie Numerical modeling and characteristic analysis of runoff and tide dynamic in the Pearl River delta[J]. The Ocean Engineering, 2008, 26 (4): 117- 124
doi: 10.3969/j.issn.1005-9865.2008.04.019
25 刘宏霄, 罗敬思, 徐治中 西江下游航道整治工程效益分析[J]. 珠江水运, 2019, (14): 61- 62
LIU Hong-xiao, LUO Jing-si, XU Zhi-zhong Benefit analysis of waterway regulation project in the lower reaches of Xijiang River[J]. Pearl River Water Transport, 2019, (14): 61- 62
26 黄镇国, 张伟强 人为因素对珠江三角洲近30年地貌演变的影响[J]. 第四纪研究, 2004, (4): 394- 401
HUANG Zhen-guo, ZHANG Wei-qiang Impacts of artificial factors on the evolution of geomorphology during recent thirty years in the Zhujiang Delta[J]. Quarterary Sciences, 2004, (4): 394- 401
doi: 10.3321/j.issn:1001-7410.2004.04.004
27 侯卫东, 陈晓宏, 江涛, 等 西北江三角洲网河径流分配的时间变化分析[J]. 中山大学学报: 自然科学版, 2004, 43 (Supple.1): 204- 207
HOU Wei-dong, CHEN Xiao-hong, JIANG Tao, et al Temporal change of flow distribution in river network of the delta of West River and North River[J]. Acta Scientiarum Naturalium Universitatis Sunyatseni, 2004, 43 (Supple.1): 204- 207
28 郑国栋. 人类活动对珠江三角洲水动力环境影响研究[D]. 武汉: 武汉大学, 2005.
ZHENG Guo-dong. Research of the human activity impact on hydrodynamic environment in Pearl River Delta [D]. Wuhan: Wuhan University, 2005.
29 胡晓张, 张宇琪, 陈军, 等 蕉门河口当前治理思路探讨[J]. 人民珠江, 2018, 39 (7): 22- 26
HU Xiao-zhang, ZHANG Yu-qi, CHEN Jun, et al Discussion on current management ideas of Jiaomen Estuary[J]. Pearl River, 2018, 39 (7): 22- 26
doi: 10.3969/j.issn.1001-9235.2018.07.005
30 郭聪, 孙志林, 郑浩磊, 等 河口冲淤对围垦的响应[J]. 浙江大学学报: 工学版, 2016, 50 (9): 1791- 1797
GUO Cong, SUN Zhi-lin, ZHENG Hao-lei, et al Response of estuarine erosion and deposition to reclamation in estuary[J]. Journal of Zhejiang University: Engineering Science, 2016, 50 (9): 1791- 1797
31 孙志林, 倪晓静, 许丹, 等 河口泥沙数学模型的若干问题[J]. 浙江大学学报: 工学版, 2015, 49 (2): 232- 237
SUN Zhi-lin, NI Xiao-jing, XU Dan, et al Some problems on mathematical model of sediment transport in Estuary[J]. Journal of Zhejiang University: Engineering Science, 2015, 49 (2): 232- 237
32 郑国栋, 顾立忠, 李虎成, 等 珠江三角洲河道地貌变化对网河水情影响研究[J]. 中国农村水利水电, 2010, (7): 33- 36
ZHENG Guo-dong, GU Li-zhong, LI Hu-cheng, et al Study on the influence of channel geomorphic change on the hydrodynamics of river channel networks in the Pearl River Delta[J]. China Rural Water and Hydropower, 2010, (7): 33- 36
No related articles found!