Please wait a minute...
浙江大学学报(工学版)  2021, Vol. 55 Issue (12): 2260-2266    DOI: 10.3785/j.issn.1008-973X.2021.12.005
土木工程、交通工程     
透明插板对太阳能烟囱通风的增强效应
何国青(),吕达
浙江大学 建筑工程学院,浙江 杭州 310058
Enhancing solar chimney ventilation efficiency by insertion of transparent panel
Guo-qing HE(),Da LV
College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058, China
 全文: PDF(1945 KB)   HTML
摘要:

为了提高太阳能烟囱的热效率,通过在烟囱内部增设构件,探究增加热边界层数量对烟囱通风的增强效应. 在高1.2 m 宽0.4 m 深0.5 m 的太阳能烟囱实验模型中,插入玻璃板,通过测量烟囱入口段流速的变化,研究透明插板对太阳能烟囱通风量的提高效果. 实验在相对封闭的大厅中进行,并在烟囱入口处布置挡风板以排除环境风速的干扰. 从10月到12月间,共获得7组实际太阳辐射下烟囱的通风量,包括内部有无插板的对比实验. 结果表明,烟囱流量主要与吸热板的得热量有关. 在太阳辐射强度几乎不变的情况下,插入1块普通玻璃板可使得烟囱通风量增加5%~9%. 实验结果证实,在烟囱通道内增加热边界层可以提高烟囱热效率.

关键词: 太阳能烟囱热边界层透明插板太阳辐射通风量    
Abstract:

To enhance the thermal efficiency of solar chimneys, this work was conducted to investigate the enhancing effect of adding thermal boundary layers on the ventilation efficiency by inserting a glazing panel in the chimney channel. A 1.2 m tall, 0.4 m wide and 0.5 m deep solar chimney laboratory model was constructed. The ventilation enhancement was studied by comparing the stack flow rate before and after the insertion of a glazing panel in the chimney channel. The experiment was conducted in a relatively closed hall. The ambient wind influence was minimized with the use of a wind shield in front of the chimney inlet. Totally 7 tests were conducted and the ventilation flow was measured. The results showed that the flow rate was mainly affected by the heat absorbed by the absorbing plate. With the solar radiation almost same, the insertion of a common glazing panel in the chimney channel increased the stack flow rate by 5% to 9%. The results confirm that increasing the number thermal boundary layers is beneficial to the thermal efficiency of the chimney.

Key words: solar chimney    thermal boundary layers    transparent insertion panel    solar radiation    ventilation
收稿日期: 2021-01-25 出版日期: 2021-12-31
CLC:  TU 18  
基金资助: 国家自然科学基金资助项目(51678518)
作者简介: 何国青(1975—),男,副教授,博士,从事建筑环境和节能研究. orcid.org/0000-0002-7667-2335. E-mail: guoqinghe@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
何国青
吕达

引用本文:

何国青,吕达. 透明插板对太阳能烟囱通风的增强效应[J]. 浙江大学学报(工学版), 2021, 55(12): 2260-2266.

Guo-qing HE,Da LV. Enhancing solar chimney ventilation efficiency by insertion of transparent panel. Journal of ZheJiang University (Engineering Science), 2021, 55(12): 2260-2266.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2021.12.005        https://www.zjujournals.com/eng/CN/Y2021/V55/I12/2260

图 1  太阳能烟囱模型示意图和测点位置
图 2  太阳能烟囱插板增强通风效应实验照片
实验组 日期 插板情况 天气状况 ta/oC 风速仪
A 2019-10-03 过程中间插入预热玻璃板 晴,无云,少霾 22~32 Swema 03+
B 2019-10-31 过程中间插入预热玻璃板 晴,无云,少霾 11~24 TSI 9545
C 2019-11-14 无玻璃板 晴,无云,少霾 14~18 TSI 9545
D 2019-11-11 始终有玻璃板 晴,无云,少霾 12~22 TSI 9545
E 2019-11-19 始终有玻璃板 晴,无云,少霾 7~14 TSI 9545
F 2019-10-16 无玻璃板 多云 15~21 Swema 03+
G 2019-12-03 无玻璃板 晴,无云,少霾 1~11 TSI 9545
表 1  太阳能烟囱内置插板增强通风效应实验工况
图 3  A、B组插板前后太阳辐照度、测点流速和温度随时刻的变化
图 4  C、D、E组太阳辐照度、测点流速随时刻的变化
时间段 实验组 热边界层
数目
$\overline Q_{ {\rm{in} } }/W$ $\overline Q_{ {\rm{out} } }/W$ $\overline Q_{ {\rm{all} } }/W$ $\overline E$/
(W·m?2)
$\overline V_{ {\rm{in} } }$/
(m·s?1)
$R_{Q_{ {\rm{in} } } }^{\rm{C}}$/% $R_{ {{E} } }^{\rm{C} }$/% $R_{v_{ {\rm{in} } } }^{\rm{C} }$/% P
14:39—17:00 C 2 76.5 42.2 118.7 187.8 0.34 0 0 0 ?
D 4 72.0 32.9 104.9 166.0 0.34 ?5.8 ?11.6 1.6 <0.001
E 4 76.8 37.8 114.7 181.5 0.36 0.5 ?3.4 5.1 <0.001
14:39—15:20 C 2 121.5 72.5 193.9 306.9 0.34 0 0 0 ?
D 4 121.9 59.6 181.5 287.2 0.33 0.3 ?6.4 ?0.9 0.009
E 4 127.4 67.6 194.9 308.4 0.34 4.8 0.5 2.5 <0.001
15:20—16:20 C 2 96.4 50.0 146.4 231.7 0.37 0 0 0 ?
D 4 85.6 36.8 122.4 193.7 0.38 ?11.2 ?16.4 1.8 <0.001
E 4 95.4 43.9 139.3 220.4 0.39 ?1.1 ?4.9 4.1 <0.001
16:20—17:00 C 2 7.9 3.8 11.8 18.6 0.30 0 0 0 ?
D 4 7.6 3.0 10.6 16.8 0.31 ?4.6 ?9.6 3.7 <0.001
E 4 4.9 2.1 7.0 11.0 0.33 ?38.5 ?40.8 9.2 <0.001
表 2  C、D、E组各时段吸热功率、垂面辐照度、测点风速的平均值
图 5  插板D组烟囱内各面吸热功率和通道风速的比对
图 6  F组太阳辐照度、测点流速和温度随时刻的变化
图 7  G组测点流速和温度随时刻的变化
1 BANSAL N K, MATHUR R, BHANDARI M S Solar chimney for enhanced stack ventilation[J]. Building and Environment, 1993, 28 (3): 373- 377
doi: 10.1016/0360-1323(93)90042-2
2 SANDBERG M, MOSHFEGH B Ventilated-solar roof air flow and heat transfer investigation[J]. Renewable Energy, 1998, 15 (1/4): 287- 292
doi: 10.1016/S0960-1481(98)00175-X
3 CHEN Z D, BANDOPADHAYAY P, HALLDORSSON J, et al An experimental investigation of a solar chimney model with uniform wall heat flux[J]. Building and Environment, 2003, 38 (7): 893- 906
doi: 10.1016/S0360-1323(03)00057-X
4 JING H, CHEN Z, LI A Experimental study of the prediction of the ventilation flow rate through solar chimney with large gap-to-height ratios[J]. Building and Environment, 2015, 89: 150- 159
doi: 10.1016/j.buildenv.2015.02.018
5 HE G, ZHANG J, HONG S A new analytical model for airflow in solar chimneys based on thermal boundary layers[J]. Solar Energy, 2016, 136: 614- 621
doi: 10.1016/j.solener.2016.07.041
6 SHI L, ZHANG G, YANG W, et al Determining the influencing factors on the performance of solar chimney in buildings[J]. Renewable and Sustainable Energy Reviews, 2018, 88: 223- 238
doi: 10.1016/j.rser.2018.02.033
7 HOU Y, LI H, LI A Experimental and theoretical study of solar chimneys in buildings with uniform wall heat flux[J]. Solar Energy, 2019, 193: 244- 252
doi: 10.1016/j.solener.2019.09.061
8 LIU B, MA X, WANG X, et al Experimental study of the chimney effect in a solar hybrid double wall[J]. Solar Energy, 2015, 115: 1- 9
doi: 10.1016/j.solener.2015.02.012
9 ZAVALA-GUILLÉN I, XAMÁN J, HERNÁNDEZ-PÉREZ I, et al Numerical study of the optimum width of 2a diurnal double air-channel solar chimney[J]. Energy, 2018, 147: 403- 417
doi: 10.1016/j.energy.2017.12.147
10 SIVALAKSHMI S, SETHUPATHI V, PACHIYANNAN M A comparative analysis on the thermal performance of solar chimney with smooth and dimpled absorber plate[J]. Materials Today: Proceedings, 2021, 43: 1124- 1127
doi: 10.1016/j.matpr.2020.08.562
11 LEI Y, ZHANG Y, WANG F, et al Enhancement of natural ventilation of a novel roof solar chimney with perforated absorber plate for building energy conservation[J]. Applied Thermal Engineering, 2016, 107: 653- 661
doi: 10.1016/j.applthermaleng.2016.06.090
12 TIJI M E, EISAPOUR M, YOUSEFZADEH R, et al A numerical study of a PCM-based passive solar chimney with a finned absorber[J]. Journal of Building Engineering, 2020, 32: 101516
doi: 10.1016/j.jobe.2020.101516
13 KHOSRAVI M, FAZELPOUR F, ROSEN M A Improved application of a solar chimney concept in a two-story building: an enhanced geometry through a numerical approach[J]. Renewable Energy, 2019, 143: 569- 585
doi: 10.1016/j.renene.2019.05.042
14 REN X H, LIU R Z, WANG Y H, et al Thermal driven natural convective flows inside the solar chimney flush-mounted with discrete heating sources: reversal and cooperative flow dynamics[J]. Renewable Energy, 2019, 138: 354- 367
doi: 10.1016/j.renene.2019.01.090
15 HE G A general model for predicting the airflow rates of a vertically installed solar chimney with connecting ducts[J]. Energy and Buildings, 2020, 229: 110481
doi: 10.1016/j.enbuild.2020.110481
16 HE G, WU Q, LI Z, et al Ventilation performance of solar chimney in a test house: field measurement and validation of plume model[J]. Building and Environment, 2021, 193 (3): 107648
17 HE G. Data for: a general model for predicting the airflow rates of a vertically installed solar chimney with connecting ducts [EB/OL]. (2020-10-28) [2020-10-28]. https://data.mendeley.com/datasets/57f7j7rhgg/2.
18 CHEN Z D, LI Y. A numerical study of a solar chimney with uniform wall heat flux [C]// 14th International Conference on Indoor Air Quality, Ventilation and Energy Conservation in Buildings. Changsha: [s. n.], 2001: 1447–1454.
19 柳孝图. 建筑物理 [M]. 4版. 北京: 中国建筑工业出版社, 2010: 134-136.
20 台玻长江玻璃有限公司. 台玻浮式明板玻璃性能数据表[EB/OL]. [2021-06-08]. http://www.taiwanglassgroup.cn/ userfiles/clear_2015.pdf.
No related articles found!