Please wait a minute...
浙江大学学报(工学版)  2021, Vol. 55 Issue (5): 984-990    DOI: 10.3785/j.issn.1008-973X.2021.05.019
材料与化学工程     
基于纳米压痕技术的电子玻璃微观力学性能研究
赵亚贤1(),马晔城1,程子强1,曹欣2,刘涌1,*(),韩高荣1
1. 浙江大学 材料科学与工程学院,硅材料国家重点实验室,浙江 杭州 310027
2. 蚌埠玻璃工业设计研究院有限公司,安徽 蚌埠 233018
Micromechanical properties of electronic glass using nanoindentation technology
Ya-xian ZHAO1(),Ye-cheng MA1,Zi-qiang CHENG1,Xin CAO2,Yong LIU1,*(),Gao-rong HAN1
1. School of Material Science and Engineering, State Key Laboratory of Silicon Material Science, Hangzhou 310027, China
2. Bengbu Design and Research Institute for Glass Industry Co. Ltd, Bengbu 233018, China
 全文: PDF(966 KB)   HTML
摘要:

为了研究不同电子玻璃的微观力学性能,采用先进的纳米压痕技术记录钠钙硅、无碱硼铝硅和碱铝硅等典型电子玻璃的载荷-位移曲线,利用Oliver-Pharr方法和经典的弹塑性变形理论,计算玻璃的硬度和弹性模量. 玻璃的硬度主要与结构的键合度相关,平均非桥氧数越高,外力作用下越容易致密化,硬度越小;弹性模量主要取决于质点间的化学键强度,化学键力越强,变形越小,弹性模量越大;九点法测得的弹性模量与硬度的变化趋势不完全相同,借助硬度-弹性模量-能量耗散之间的本征关系,评价玻璃样品的微观均匀性,其中无碱硼铝硅玻璃的恢复阻力大,局部能量耗散大,不容易引起整体破坏,力学性能最好;与浮法工艺相比,溢流下拉法制备样品的局部力学性能波动较小,微观均匀性较好.

关键词: 纳米压痕技术硬度弹性模量能量耗散微观均匀性    
Abstract:

Advanced nanoindentation technology was used to record load-displacement curves of typical electronic glasses, including soda lime silicate, alkali-free boroaluminosilicate and alkali aluminosilicate glasses, in order to study the microscopic mechanical properties of different electronic glasses. Hardness and elastic modulus were calculated using the Oliver-Pharr method and elastoplastic deformation theory. The hardness of glass is mainly related to the bonding degree of glass structure. The higher the average number of non-bridging oxygen, the easier it is to densify under stress, thus the lower the hardness. The elastic modulus mainly depends on the strength of chemical bond between particles. Stronger chemical bond leads to smaller deformation and larger elastic modulus. Different trends were observed for the elastic modulus and the hardness measured by the nine-point method. Microscopic uniformity of the glass samples has been evaluated based on the intrinsic relationship between hardness, elastic modulus and energy dissipation. Results showed that the alkali-free boroaluminosilicate glass had the best mechanical properties with high recovery resistance and local energy dissipation, making it not easy to cause overall damage. Samples prepared by overflow down-draw process showed less fluctuations in the local mechanical properties and got better micromechanical uniformity compared with samples prepared by float process.

Key words: nanoindentation technology    hardness    elastic modulus    energy dissipation    microscopic uniformity
收稿日期: 2020-03-20 出版日期: 2021-06-10
CLC:  TQ 171.71  
基金资助: “十三五”国家重点研发计划资助项目(2016YFB0303700);国家自然科学基金资助项目(U1809217,51672242);浮法玻璃新技术国家重点实验室开放课题基金资助项目
通讯作者: 刘涌     E-mail: 3130104409@zju.edu.cn;liuyong.mse@zju.edu.cn
作者简介: 赵亚贤(1994—),女,博士生,从事玻璃结构数值模拟研究. orcid.org/0000-0002-7071-6253. E-mail: 3130104409@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
赵亚贤
马晔城
程子强
曹欣
刘涌
韩高荣

引用本文:

赵亚贤,马晔城,程子强,曹欣,刘涌,韩高荣. 基于纳米压痕技术的电子玻璃微观力学性能研究[J]. 浙江大学学报(工学版), 2021, 55(5): 984-990.

Ya-xian ZHAO,Ye-cheng MA,Zi-qiang CHENG,Xin CAO,Yong LIU,Gao-rong HAN. Micromechanical properties of electronic glass using nanoindentation technology. Journal of ZheJiang University (Engineering Science), 2021, 55(5): 984-990.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2021.05.019        http://www.zjujournals.com/eng/CN/Y2021/V55/I5/984

电子玻璃种类 工艺 厚度/mm 编号
钠钙硅玻璃 浮法 1.10 S1
无碱硼铝硅玻璃 溢流下拉法 0.30 S2
无碱硼铝硅玻璃 浮法 0.33 S3
碱铝硅玻璃 溢流下拉法 0.40 S4
表 1  电子玻璃种类、工艺及厚度
图 1  纳米压痕仪施加在玻璃表面的载荷-位移曲线
图 2  纳米压痕测试的测试点阵
图 3  电子玻璃样品的硬度以及S4的光学显微印痕
%
种类 编号 r
(SiO2
r
(Al2O3
r
(B2O3
r
(Na2O+K2O)
r
(CaO+MgO)
钠钙硅 S1 71.67 0.94 ? 13.24 14.15
无碱硼铝硅 S2 68.21 10.78 9.87 ? 11.14
无碱硼铝硅 S3 68.78 11.62 8.01 ? 11.59
碱铝硅 S4 64.94 10.34 0.09 15.78 8.85
表 2  实验玻璃样品的化学组成
图 4  实验玻璃样品的键合度以及平均桥氧和非桥氧数
图 5  电子玻璃的弹性模量
图 6  电子玻璃在不同测试点的弹性模量与硬度
图 7  2种工艺制备玻璃样品的恢复阻力
1 OLIVER W C, PHARR G M An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments[J]. Journal of Materials Research, 1992, 7 (6): 1564- 1583
doi: 10.1557/JMR.1992.1564
2 OLIVER W C, PHARR G M Measurement of hardness and elastic modulus by instrumented indentation: advances in understanding and refinements to methodology[J]. Journal of Materials Research, 2004, 19 (1): 3- 20
doi: 10.1557/jmr.2004.19.1.3
3 SEBASTIANI M, JOHANNS K E, HERBERT E G, et al Measurement of fracture toughness by nanoindentation methods: recent advances and future challenges[J]. Current Opinion in Solid State and Materials Science, 2015, 19 (6): 324- 333
doi: 10.1016/j.cossms.2015.04.003
4 HYUN H C, RICKHEY F, LEE J H, et al Evaluation of indentation fracture toughness for brittle materials based on the cohesive zone finite element method[J]. Engineering Fracture Mechanics, 2015, 134: 304- 316
doi: 10.1016/j.engfracmech.2014.11.013
5 MA D, SUN L, GAO T, et al New method for extracting fracture toughness of ceramic materials by instrumented indentation test with Berkovich indenter[J]. Journal of the European Ceramic Society, 2017, 37 (6): 2537- 2545
doi: 10.1016/j.jeurceramsoc.2017.02.007
6 LI X, BHUSHAN B A review of nanoindentation continuous stiffness measurement technique and its applications[J]. Materials Characterization, 2002, 48: 11- 36
doi: 10.1016/S1044-5803(02)00192-4
7 SAHA R, NIX W D Effects of the substrate on the determination of thin film mechanical properties by nanoindentation[J]. Acta Materialia, 2002, 50: 23- 38
doi: 10.1016/S1359-6454(01)00328-7
8 ANDRE D, BURLET T, KORKEMEYER F, et al Investigation of the electroplastic effect using nanoindentation[J]. Materials and Design, 2019, 183: 108153
doi: 10.1016/j.matdes.2019.108153
9 WANG Y, ZHUANG W, YANG H, et al Determination of mechanical properties of pure zirconium processed by surface severe plastic deformation through nanoindentation[J]. Rare Metals, 2019, 38 (9): 824- 831
doi: 10.1007/s12598-019-01302-6
10 XU J, CORR D J, SHAH S P Nanomechanical properties of C-S-H gel/cement grain interface by using nanoindentation and modulus mapping[J]. Journal of Zhejiang University: Science A, 2015, 16 (1): 38- 46
doi: 10.1631/jzus.A1400166
11 杨亚鹏, 陈晓晓, 张亚, 等 硬脆材料微纳米压痕微尺度材料去除机理有限元仿真研究[J]. 工具技术, 2018, 52 (7): 45- 48
YANG Ya-peng, CHEN Xiao-xiao, ZHANG Ya, et al Finite element simulation study on micro scale materials removal mechanism micro nano indentation of hard and brittle materials[J]. Tool Engineering, 2018, 52 (7): 45- 48
doi: 10.3969/j.issn.1000-7008.2018.07.023
12 刘圣鑫, 王宗秀, 张林炎, 等 基于纳米压痕的页岩微观力学性质分析[J]. 实验力学, 2018, 33 (6): 957- 967
LIU Sheng-xin, WANG Zong-xiu, ZHANG Lin-yan, et al Micromechanics properties analysis of shale based on nano-indentation[J]. Journal of Experimental Mechanics, 2018, 33 (6): 957- 967
doi: 10.7520/1001-4888-17-072
13 ZHAO Y, DU J, QIAO X, et al Ionic self-diffusion of Na2O-Al2O3-SiO2 glasses from molecular dynamics simulations [J]. Journal of Non-Crystalline Solids, 2020, 527: 119734
doi: 10.1016/j.jnoncrysol.2019.119734
14 LU X, DENG L, DU J Effect of ZrO2 on the structure and properties of soda-lime silicate glasses from molecular dynamics simulations [J]. Journal of Non-Crystalline Solids, 2018, 491: 141- 150
doi: 10.1016/j.jnoncrysol.2018.04.013
15 DENG L, URATA S, TAKIMOTO Y, et al Structural features of sodium silicate glasses from reactive force field-based molecular dynamics simulations[J]. Journal of the American Ceramic Society, 2019, 103 (3): 1600- 1614
16 REN M, CHENG J Y, JACCANI S P, et al Composition-structure-property relationships in alkali aluminosilicate glasses: acombined experimental-computational approach towards designing functional glasses[J]. Journal of Non-Crystalline Solids, 2019, 505: 144- 153
doi: 10.1016/j.jnoncrysol.2018.10.053
17 GREAVES G N EXAFS and the structure of glass[J]. Journal of Non-Crystalline Solids, 1985, 71: 203- 217
doi: 10.1016/0022-3093(85)90289-3
18 BECHGAARD T K, GOEL A, YOUNGMAN R E, et al Structure and mechanical properties of compressed sodium aluminosilicate glasses: role of non-bridging oxygens[J]. Journal of Non-Crystalline Solids, 2016, 441: 49- 57
doi: 10.1016/j.jnoncrysol.2016.03.011
19 PHARR G M, HERBERT E G, GAO Y The indentation size effect: a critical examination of experimental observations and mechanistic interpretations[J]. Annual Review of Materials Research, 2010, 40 (1): 271- 292
doi: 10.1146/annurev-matsci-070909-104456
20 QIN C, YAO Z Effect of hot deformation on the mechanical properties of electron beam welded TC11/Ti2AlNb alloys [J]. Rare Metal Materials and Engineering, 2019, 48 (11): 3463- 3469
21 赵亚贤, 刘涌, 乔旭升, 等 电子玻璃中碱金属离子扩散行为的分子动力学研究[J]. 燕山大学学报, 2017, 41 (4): 304- 310
ZHAO Ya-xian, LIU Yong, QIAO Xu-sheng, et al Molecular dynamics simulation on diffusion behaviors of alkali metal ions in electronic glasses[J]. Journal of Yanshan University, 2017, 41 (4): 304- 310
doi: 10.3969/j.issn.1007-791X.2017.04.004
22 RAGOEN C, SEN S, LAMBRICHT T, et al Effect of Al2O3 content on the mechanical and interdiffusional properties of ion-exchanged Na-aluminosilicate glasses [J]. Journal of Non-Crystalline Solids, 2017, 458: 129- 136
doi: 10.1016/j.jnoncrysol.2016.12.019
23 JIANG L, GUO X, LI X, et al Different K+–Na+ inter-diffusion kinetics between the air side and tin side of an ion-exchanged float aluminosilicate glass [J]. Applied Surface Science, 2013, 265: 889- 894
doi: 10.1016/j.apsusc.2012.11.143
24 VARGHEESE K D, TANDIA A, MAURO J C Molecular dynamics simulations of ion-exchanged glass[J]. Journal of Non-Crystalline Solids, 2014, 403: 107- 112
doi: 10.1016/j.jnoncrysol.2014.07.025
25 SVENSON M N, THIRION L M, YOUNGMAN R E, et al Effects of thermal and pressure histories on the chemical strengthening of sodium aluminosilicate glass[J]. Frontiers in Materials, 2016, 3: 14
26 陈芳芳, 陈佳佳, 胡亚铃, 等 浮法玻璃拉引向和横向热膨胀系数的差异性分析[J]. 生产技术, 2018, (1): 7- 8
CHEN Fang-fang, CHEN Jia-jia, HU Ya-ling, et al Analysis of the difference in the directional and transverse thermal expansion coefficients of the float glass[J]. Production Technology, 2018, (1): 7- 8
27 周喆 浅析影响浮法生产线玻筋产生的因素[J]. 中国玻璃, 2011, (2): 12- 14
ZHOU Zhe Analysis on causes of glass vein generation in float glass production line[J]. China Glass, 2011, (2): 12- 14
28 刘磊, 孙亚明, 王琰, 等 玻璃均匀性的影响因素[J]. 玻璃, 2018, (2): 21- 25
LIU Lei, SUN Ya-ming, WANG Yan, et al Influencing factors of glass uniformity[J]. Glass, 2018, (2): 21- 25
doi: 10.3969/j.issn.1003-1987.2018.02.006
29 曹欣, 王萍萍, 石丽芬, 等 超薄电子信息玻璃光学均匀性的检测方法[J]. 材料导报, 2018, 32: 89- 91
CAO Xin, WANG Ping-ping, SHI Li-fen, et al Methods for measuring the optical homogeneity of ultra-thin glass used in electronic information[J]. Materials Reports, 2018, 32: 89- 91
[1] 姚喆赫,张操棋,宋其伟,卢习江,孔建强,姚建华. 超声辅助激光修复镍基高温合金V形槽[J]. 浙江大学学报(工学版), 2021, 55(5): 887-895.
[2] 庄心善,赵汉文,王俊翔,黄勇杰. 合肥膨胀土动弹性模量与阻尼比试验研究[J]. 浙江大学学报(工学版), 2020, 54(4): 759-766.
[3] 王鹏,邓争志,王辰,任翔. 振荡水柱式防波堤的水动力特性[J]. 浙江大学学报(工学版), 2019, 53(12): 2335-2341.
[4] 陈建稳, 王明洋, 陈务军, 张宁, 周涵, 赵兵. 层压织物类膜材拉伸应变在应力空间上响应特征[J]. 浙江大学学报(工学版), 2016, 50(11): 2150-2157.
[5] 张富翁, 王立, 刘传平. 双组分颗粒振动体系中的能量传递与耗散[J]. 浙江大学学报(工学版), 2015, 49(3): 571-577.
[6] 周锋,顾临怡,罗高生. 用于水下推进系统的先导比例减压阀的稳定性[J]. 浙江大学学报(工学版), 2015, 49(11): 2047-2053.
[7] 陈小光, 郑平. 超高效厌氧生物反应器床层能量耗散率[J]. J4, 2011, 45(2): 358-363.
[8] 刘飞禹 蔡袁强 徐长节 王军. 循环荷载下软土动弹性模量衰减规律研究[J]. J4, 2008, 42(9): 1479-1483.
[9] 应华根 吴进明 罗伟 严密. 无热处理高硬度高耐磨性化学镀镍磷合金[J]. J4, 2007, 41(8): 1356-1360.
[10] 谢旭 阙仁波 张鹤 沈赤. 有效弹性模量法在大跨斜拉桥稳定计算中应用[J]. J4, 2006, 40(10): 1761-1767.
[11] 金南国 金贤玉 郭剑飞. 混凝土孔结构与强度关系模型研究[J]. J4, 2005, 39(11): 1680-1684.