生物医学工程 |
|
|
|
|
基于鱼群算法的脑功能连接邻域粗糙集特征归约方法 |
冀俊忠1,2( ),宋晓妮1,2,杨翠翠1,2,*( ) |
1. 北京工业大学 信息学部,多媒体与智能软件技术北京市重点实验室,北京 100124 2. 北京工业大学 北京人工智能研究院,北京 100124 |
|
Feature reduction of neighborhood rough set based on fish swarm algorithm in brain functional connectivity |
Jun-zhong JI1,2( ),Xiao-ni SONG1,2,Cui-cui YANG1,2,*( ) |
1. Beijing Municipal Key Laboratory of Multimedia and Intelligent Software Technology, Faculty of Information Technology, Beijing University of Technology, Beijing 100124, China 2. Beijing Institute of Artificial Intelligence, Beijing University of Technology, Beijing 100124, China |
1 |
颜志雄, 刘勋, 谭淑平 发展认知神经科学: 人脑毕生发展的功能连接组学时代[J]. 科学通报, 2016, 61 (7): 718- 727 YAN Zhi-xiong, LIU Xun, TAN Shu-ping Developmental cognitive neuroscience: functional connectomics agenda for human brain lifespan development[J]. Chinese Science Bulletin, 2016, 61 (7): 718- 727
doi: 10.1360/N972015-01146
|
2 |
WANG S, ZHANG Y, LV L, et al Abnormal regional homogeneity as a potential imaging biomarker for adolescent-onset schizophrenia: aresting-state fMRI study and support vector machine analysis[J]. Schizophrenia Research, 2018, 192: 179- 184
doi: 10.1016/j.schres.2017.05.038
|
3 |
COHEN J D, DAW N, WNGELHRSDT B Computational approaches to fMRI analysis[J]. Nature Neuroscience, 2017, 20 (3): 304- 313
doi: 10.1038/nn.4499
|
4 |
BASSETT D S, SPORNS O Network neuroscience[J]. Nature Neuroscience, 2017, 20 (3): 353
doi: 10.1038/nn.4502
|
5 |
GENG X F, XU J H, LIU B L, et al Multivariate classification of major depressive disorder using the effective connectivity and functional connectivity[J]. Frontiers in Neuroscience, 2018, 12: 38- 53
doi: 10.3389/fnins.2018.00038
|
6 |
MOHANTY R, SINHAA M, REMSIK A B, et al Machine learning classification to identify the stage of brain-computer interface therapy for stroke rehabilitation using functional connectivity[J]. Frontiers in Neuroscience, 2018, 12: 353- 366
doi: 10.3389/fnins.2018.00353
|
7 |
SHEN H, WANG L, LIU Y, et al Discriminative analysis of resting-state functional connectivity patterns of schizophrenia using low dimensional embedding of fMRI[J]. Neuroimage, 2010, 49 (4): 3110- 3121
doi: 10.1016/j.neuroimage.2009.11.011
|
8 |
HAMDI S M, AYDIN B, BOUBRAHIMI S F, et al. Biomarker detection from fMRI-based complete functional connectivity networks [C]// IEEE First International Conference on Artificial Intelligence and Knowledge Engineering. Laguna Hills: IEEE, 2018: 17-24.
|
9 |
CHENG W, ROLLS E T, GU H, et al Autism: reduced connectivity between cortical areas involved in face expression, theory of mind, and the sense of self[J]. Brain, 2015, 138 (5): 1382- 1393
doi: 10.1093/brain/awv051
|
10 |
KONG Y, GAO J, XU Y, et al Classification of autism spectrum disorder by combining brain connectivity and deep neural network classifier[J]. Neurocomputing, 2019, 324: 63- 68
doi: 10.1016/j.neucom.2018.04.080
|
11 |
PAWLAK Z Rough sets[J]. International Journal of Computer and Information Sciences, 1982, 11: 341- 356
doi: 10.1007/BF01001956
|
12 |
付志耀, 高岭, 孙骞, 等 基于粗糙集的漏洞属性约简及严重性评估[J]. 计算机研究与发展, 2016, 5305: 1009- 1017 FU Zhi-yao, GAO Ling, SUN Qian, et al Vulnerability attribute reduction and severity evaluation based on rough set[J]. Journal of Computer Research and Development, 2016, 5305: 1009- 1017
|
13 |
LIU H B, ABRANAM A, ZHANG W S A swarm-based rough set approach for fMRI data analysis[J]. International Journal of Innovative Computing, Information and Control, 2011, 7 (6): 3121- 3132
|
14 |
SARKHEYLI A, SOFFKER D. Automatic selection of relevant features using Rough Set Theory for real-time situation recognition based on fuzzy SOM-based CBR [C]// IEEE International Conference on Systems, Man, and Cybernetics. Budapest: IEEE, 2016: 832-837.
|
15 |
陈俞, 赵素云, 李雪峰, 等 基于随机抽样的模糊粗糙约简[J]. 软件学报, 2017, 28 (11): 2825- 2835 CHEN Yu, ZHAO Su-yun, LI Xue-feng, et al Fuzzy rough reduction based on random sampling[J]. Journal of Software, 2017, 28 (11): 2825- 2835
|
16 |
于洪, 王国胤, 姚一豫 决策粗糙集理论研究现状与展望[J]. 计算机学报, 2015, 3808: 1628- 1639 YU Hong, WANG Guo-yin, YAO Yi-yu Current situation and prospect of decision rough set theory[J]. Journal of Computer, 2015, 3808: 1628- 1639
|
17 |
HU Q H, YU D R Numerical attribute reduction based on neighborhood granulation and rough approximation[J]. Journal of Software, 2008, 19 (3): 640- 649
doi: 10.3724/SP.J.1001.2008.00640
|
18 |
MENG J, ZHANG J, LI R Gene selection using rough set based on neighborhood for the analysis of plant stress response[J]. Applied Soft Computing, 2014, 25: 51- 63
doi: 10.1016/j.asoc.2014.09.013
|
19 |
XIE X, XIE G, XU X High precision image segmentation algorithm using SLIC and neighborhood rough set[J]. Multimedia Tools and Applications, 2018, 77 (24): 31525- 31543
doi: 10.1007/s11042-018-6150-y
|
20 |
HU Q, YU D, XIE Z Neighborhood classifiers[J]. Expert Systems with Applications, 2008, 34 (2): 866- 876
doi: 10.1016/j.eswa.2006.10.043
|
21 |
李晓磊, 邵之江, 钱积新 一种基于动物自治体的寻优模式: 鱼群算法[J]. 系统工程理论与实践, 2002, 22 (11): 32- 38 LI Xiao-lei, SHAO Zhi-jiang, Qian Ji-xin A fish swarm algorithm based on animal autonomy[J]. Systems Engineering Theory and Practice, 2002, 22 (11): 32- 38
|
22 |
XIAN S, ZHANG J, XIAO Y, et al A novel fuzzy time series forecasting method based on the improved artificial fish swarm optimization algorithm[J]. Soft Computing, 2017, 22 (12): 3907- 3917
|
23 |
ZHU X, NI Z, CHENG M, et al Selective ensemble based on extreme learning machine and improved discrete artificial fish swarm algorithm for haze forecast[J]. Applied Intelligence, 2018, 48 (7): 1757- 1775
doi: 10.1007/s10489-017-1027-8
|
24 |
JIE N F, OSUCH E A, ZHU M H, et al Discriminating bipolar disorder from major depression using whole-brain functional connectivity: a feature selection analysis with SVM-FoBa algorithm[J]. Journal of Signal Processing Systems, 2018, 90 (2): 259- 271
doi: 10.1007/s11265-016-1159-9
|
25 |
JIE N F, ZHU M H, MA X Y, et al Discriminating bipolar disorder from major depression based on SVM-FoBa: efficient feature selection with multimodal brain imaging data[J]. IEEE Transactions on Autonomous Mental Development, 2015, 7 (4): 320- 331
doi: 10.1109/TAMD.2015.2440298
|
26 |
BUCKNER R L, ANDREWS-HANNA J R, SCHACTERD L The brain's default network: anatomy, function, and relevance to disease[J]. New York Academy of Sciences, 2008, 1124: 1- 38
doi: 10.1196/annals.1440.011
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|