Please wait a minute...
浙江大学学报(工学版)  2020, Vol. 54 Issue (10): 1964-1970    DOI: 10.3785/j.issn.1008-973X.2020.10.013
能源工程、机械工程     
液态金属磁流体发电机空载电压
易仁义(),王勇*(),谢玉东,乔凯,张宇磊
山东大学 机械工程学院,山东 济南 250061
No-load voltage of liquid metal magnetohydrodynamic power generator
Ren-yi YI(),Yong WANG*(),Yu-dong XIE,Kai QIAO,Yu-lei ZHANG
School of Mechanical Engineering, Shandong University, Jinan 250061, China
 全文: PDF(1290 KB)   HTML
摘要:

为了探究影响液态金属磁流体发电机空载电压的因素,建立发电通道三维流动模型. 采用计算流体力学(CFD)技术,研究发电通道入口速度、磁感应强度、通道宽度、通道高度、液态金属类别对空载电压的影响. 考虑哈特曼层电流回流现象,通过添加绝缘块,对发电通道装置进行结构改进. 从改进后的磁流体速度分布和电流密度变化两方面,分析空载电压优化机理. 结果表明:空载电压与入口速度、磁感应强度、通道宽度成正比,与通道高度无明显关系,但是通道宽度越大,空载电压相对误差越高;高密度、低电导率的液态金属会降低空载电压. 发电通道改进前,空载电压的相对误差为12.3%;改进后的发电通道,空载电压比改进前提高13.3%,相对误差降至0.6%.

关键词: 液态金属磁流体(LMMHD)空载电压结构改进Fluent    
Abstract:

A three-dimensional flow model of power generation channel was constructed in order to analyze the factors affecting the no-load voltage of liquid metal magnetohydrodynamic power generator. The influence of inlet velocity, magnetic flux density, channel width, channel height and liquid metal category on no-load voltage was analyzed based on computational fluid dynamics (CFD) method. The structure of power generation channel was modified by adding insulating blocks considering that current has reflux phenomenon in Hartmann layer. The optimization mechanism of the no-load voltage was analyzed from two aspects of the change of velocity distribution and current density. Results showed that the no-load voltage was proportional to the inlet velocity, magnetic flux density and channel width, but had no obvious relationship with channel height. The larger the channel width was, the higher the relative error of the no-load voltage was. The liquid metal with high density and low conductivity reduced the no-load voltage. The relative error of no-load voltage was about 12.3% before the improvement of generation channel. After the improvement, the no-load voltage was increased by 13.3% and the relative error was reduced to 0.6% compared with before improvement.

Key words: liquid metal magnetohydrodynamic (LMMHD)    no-load voltage    structural improvement    Fluent
收稿日期: 2019-10-08 出版日期: 2020-10-28
CLC:  TK 5  
基金资助: 国家自然科学基金资助项目(51875316);山东省自然科学基金资助项目(ZR2019MEE025)
通讯作者: 王勇     E-mail: 2814069775@qq.com;meywang@sdu.edu.cn
作者简介: 易仁义(1996—),男,硕士生,从事磁流体发电技术的研究. orcid.org/0000-0003-4865-3513. E-mail: 2814069775@qq.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
易仁义
王勇
谢玉东
乔凯
张宇磊

引用本文:

易仁义,王勇,谢玉东,乔凯,张宇磊. 液态金属磁流体发电机空载电压[J]. 浙江大学学报(工学版), 2020, 54(10): 1964-1970.

Ren-yi YI,Yong WANG,Yu-dong XIE,Kai QIAO,Yu-lei ZHANG. No-load voltage of liquid metal magnetohydrodynamic power generator. Journal of ZheJiang University (Engineering Science), 2020, 54(10): 1964-1970.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2020.10.013        http://www.zjujournals.com/eng/CN/Y2020/V54/I10/1964

图 1  发电通道的几何模型
图 2  典型截面的网格划分
图 3  Hunt算例通道模型
图 4  流速分布数值解与解析解的对比
工质 ρ/(kg·m3 σ/(S·m?1 μ/(Pa·s)
水银 1.35×104 1.04×106 0.16×10-2
镓铟锡合金 6.44×103 2.24×106 0.24×10-2
铀合金 8.85×103 2.30×106 0.27×10-2
钠钾合金 8.66×102 2.46×106 0.66×10-3
表 1  不同工质的物理化学性质
图 5  不同因素与空载电压的关系
工质 U/mV U′/mV δ/%
水银 0.48 0.410 14.6
镓铟锡合金 0.48 0.421 12.3
铀合金 0.48 0.418 12.9
钠钾合金 0.48 0.451 6.0
表 2  不同工质下的空载电压
图 6  基准条件下典型截面x方向的电流密度分布
图 7  典型截面x方向电流密度
图 8  典型截面z方向速度分布
图 9  典型截面上,y=0直线上的x方向的电场强度
1 PANCHADAR K, WEST D, TAYLOR J A, et al Mechanical energy harvesting using a liquid metal vortex magnetohydrodynamic generator[J]. Applied Physics Letters, 2019, 114 (9): 093901-1- 5
2 JACKSON W D Liquid-metal Faraday-type MHD generators[J]. IEEE Transactions on Power Apparatus and Systems, 1963, 82 (69): 904- 907
doi: 10.1109/TPAS.1963.291473
3 YAMADA K, MAEDA T, HASEGAWA Y, et al Two-dimensional numerical simulation on performance of liquid metal MHD generator[J]. Electrical Engineering in Japan, 2006, 156 (1): 25- 32
doi: 10.1002/eej.20165
4 YAMADA K, MAEDA T, HASEGAWA Y, et al Three-dimensional numerical analysis of a liquid metal MHD generator[J]. Electrical Engineering in Japan, 2007, 160 (3): 19- 26
doi: 10.1002/eej.20282
5 RYAN D, LOESCHER C, HAMILTON I, et al Magnetic variation and power density of gravity driven liquid metal magnetohydrodynamic generators[J]. Annals of Nuclear Energy, 2018, 114: 325- 328
doi: 10.1016/j.anucene.2017.12.047
6 HUANG Z Y, LIU Y J, WANG Z Y, et al Three-dimensional simulations of MHD generator coupling with outer resistance circuit[J]. Simulation Modelling Practice and Theory, 2015, 54: 1- 18
doi: 10.1016/j.simpat.2015.02.006
7 KOBAYASHI H, SHIONOYA H, OKUNO Y Turbulent duct flows in a liquid metal magnetohydrodynamic power generator[J]. Journal of Fluid Mechanics, 2012, 713: 243- 270
doi: 10.1017/jfm.2012.456
8 RYNNE T M. Ocean wave energy conversion system: 5136173 [P]. 1992-08-04.
9 王勇, 孙光, 崔艳, 等. 鳐鱼式液态金属磁流体发电装置及发电方法: 201610191945.5 [P]. 2016-03-30.
10 赵凌志, 彭燕, 沙次文, 等 新型液态金属磁流体发电机的等效电路模型[J]. 电力自动化设备, 2011, 31 (12): 21- 25
ZHAO Ling-zhi, PENG Yan, SHA Ci-wen, et al Equivalent circuit model of liquid metal magnetohydrodynamic generator[J]. Electric Power Automation Equipment, 2011, 31 (12): 21- 25
11 彭燕. 新型磁流体波浪能发电技术的研究[C] // 2010中国可再生能源科技发展大会论集. 北京: [s. n. ], 2010: 638-643.
PENG Yan. Novel wave energy converter with magnetohydrodynamic generator [C] // Conference on China Technological Development of Renewable Energy Source. Beijing: [s. n. ], 2010: 638-643.
12 LIN Z W, PENG Y, ZHAO L Z, et al. Analytical study on end effect of liquid metal MHD generator [C] // 38th AIAA Plasmadynamics and Lasers Conference. Miami: AIAA, 2007.
13 LIU B L, LI J, PENG Y, et al Experimental and numerical investigation of magnetohydrodynamic generator for wave energy[J]. Journal of Ocean and Wind Energy, 2015, 2 (1): 21- 27
14 YAMAGUCHI H, NIU X D, ZHANG X R Investigation on a low-melting-point gallium alloy MHD power generator[J]. International Journal of Energy Research, 2011, 35 (3): 209- 220
doi: 10.1002/er.1685
15 NIU X D, YAMAGUCHI H, YE X J, et al Characteristics of a MHD power generator using a low-melting-point Gallium alloy[J]. Electrical Engineering, 2012, 96 (1): 37- 43
16 SWAIN P K, SATYAMURTHY P, BHATTACHARYAY R, et al 3D MHD lead–lithium liquid metal flow analysis and experiments in a Test-Section of multiple rectangular bends at moderate to high Hartmann numbers[J]. Fusion Engineering and Design, 2013, 88 (11): 2848- 2859
doi: 10.1016/j.fusengdes.2013.05.048
17 张宇磊, 王勇, 谢玉东, 等 新型液态金属磁流体发电动力学特性数值模拟[J]. 山东大学学报: 工学版, 2019, 49 (1): 101- 106
ZHANG Yu-lei, WANG Yong, XIE Yu-dong, et al Numerical simulation on kinetics characteristics of liquid metal MHD generator[J]. Journal of Shandong University: Engineering Science, 2019, 49 (1): 101- 106
18 张秀杰, 毛洁, 潘传杰, 等 矩形管道中液态金属MHD流动数值模拟研究[J]. 核聚变与等离子体物理, 2012, 32 (1): 15- 20
ZHANG Xiu-jie, MAO Jie, PAN Chuan-jie, et al Numerical analysis of liquid metal MHD flows in rectangular duct[J]. Nuclear Fusion and Plasma Physics, 2012, 32 (1): 15- 20
19 HUNT J C R Magnetohydrodynamic flow in rectangular ducts[J]. Journal of Fluid Mechanics, 1965, 21 (4): 577- 590
doi: 10.1017/S0022112065000344
20 ZHAO L Z, PENG Y, SHA C W, et al. End effect of liquid metal magnetohydrodynamic generator in wave energy direct conversion system [C] // International Conference on Sustainable Power Generation and Supply. Nanjing: IEEE, 2009: 1-6.
[1] 杨楚航,贾绍辉,马晔城,朱经纬,刘涌,韩高荣. 全氧燃烧高铝玻璃熔窑三维数值工程仿真[J]. 浙江大学学报(工学版), 2021, 55(2): 410-418.
[2] 云忠,温猛,蒋毅,陈龙,冯龙飞. 仿生蝠鲼胸鳍摆动推进机构设计与水动力分析[J]. 浙江大学学报(工学版), 2019, 53(5): 872-879.
[3] 夏能, 颉俊, 张承谦, 赵朋, 傅建中. 抗磁性物质的磁悬浮仿真及密度测量[J]. 浙江大学学报(工学版), 2018, 52(3): 473-478.
[4] 李梦暄, 吴价, 郑水英, 应光耀, 刘淑莲. 不同轴瓦结构滑动轴承-转子系统的稳定性[J]. 浙江大学学报(工学版), 2017, 51(11): 2239-2248.
[5] 刘海宾, 王勇, 马鹏磊, 谢玉东. 基于平行式振荡翼系统参数耦合分析[J]. 浙江大学学报(工学版), 2017, 51(1): 153-159.
[6] 阮方,钱晓倩,朱耀台,吴敏莉. 分室间歇用能对墙体内外保温节能效果的影响[J]. 浙江大学学报(工学版), 2016, 50(1): 1-7.
[7] 李强 刘淑莲 郑水英 孙婷梅. 迷宫密封非线性动力特性的数值计算方法[J]. J4, 2009, 43(3): 500-504.