Please wait a minute...
浙江大学学报(工学版)  2020, Vol. 54 Issue (8): 1620-1627    DOI: 10.3785/j.issn.1008-973X.2020.08.022
化学工程     
缠绕管结构参数对管内压降的影响及压降模型
郭燕妮(),杨遥*(),黄正梁,王靖岱,阳永荣
浙江大学 浙江省化工高效制造技术重点实验室,浙江 杭州 310027
Pressure drop model and influence of structure parameters of helical coil on pressure drop in tube
Yan-ni GUO(),Yao YANG*(),Zheng-liang HUANG,Jing-dai WANG,Yong-rong YANG
Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, Zhejiang University, Hangzhou 310027, China
 全文: PDF(1278 KB)   HTML
摘要:

为了研究缠绕管内流体的压降规律、建立具有较宽适用范围的压降预测模型,以水为介质,采用U型压差计测量缠绕管内流体进、出口的压降,实验考察缠绕直径、缠绕角度、管径等缠绕管结构参数对管内压降的影响. 结果表明,在流速及其他结构参数相同的情况下,缠绕直径或管径越小,单位长度缠绕管内压降越大;在不同流速区间,缠绕管结构参数对管内压降的影响程度不同. 在低流速(小于0.5 m/s)下,缠绕管结构对管内压降的影响较小;在高流速(大于0.5 m/s)下,缠绕管结构对管内压降的影响显著. 采用统一的压降预测模型对实验数据拟合会使得其在高压降区失准,进而提出由流动参数和缠绕管几何参数组合而成的分段特征参数,并构建分段式压降预测模型. 分段式压降模型的计算值与实验值的相对偏差小于10%.

关键词: 缠绕管二次流结构参数压降模型特征参数    
Abstract:

The pressure drops of the fluid in the helical coil were measured through the water as the medium and the U-shaped pressure instrument as the measuring tool, to study the law of pressure drop in the helical coil and establish a pressure drop prediction model with a wide range of applications. The effects of structure parameters including coiling diameter, coiling angle and tube diameter on the pressure drop were investigated experimentally. Results show that the pressure drop of the helical coil is larger if the coiling diameter or the tube diameter of the helical coil is smaller in the case of the same flow rate and other structure parameters. The structure parameters of the helical coil have different effects on the pressure drop at different flow rate ranges. The influence of the structure parameters on the pressure drop is small at low flow rates (u<0.5 m/s), and the structure parameters have a significant influence on the pressure drop at high flow rates (u>0.5 m/s). The uniform model parameters made the prediction model of the pressure drop in the helical coil misaligned in the high-pressure drop zone. Therefore, the segmentation characteristic parameter was proposed, which is composed of the flow parameters and the structure parameters. The relative deviation of the pressure drop between the calculated and the measured is less than 10%.

Key words: helical coil    secondary flow    structure parameter    pressure drop model    characteristic parameter
收稿日期: 2019-07-21 出版日期: 2020-08-28
CLC:  TQ 022.1  
基金资助: 国家自然科学基金资助项目(21808197,61621002);国家杰出青年科学基金资助项目(21525627)
通讯作者: 杨遥     E-mail: 974003446@qq.com;yangyao306@gmail.com
作者简介: 郭燕妮(1993—),女,硕士生,从事化工过程方向研究. orcid.org/0000-0003-0046-4764. E-mail: 974003446@qq.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
郭燕妮
杨遥
黄正梁
王靖岱
阳永荣

引用本文:

郭燕妮,杨遥,黄正梁,王靖岱,阳永荣. 缠绕管结构参数对管内压降的影响及压降模型[J]. 浙江大学学报(工学版), 2020, 54(8): 1620-1627.

Yan-ni GUO,Yao YANG,Zheng-liang HUANG,Jing-dai WANG,Yong-rong YANG. Pressure drop model and influence of structure parameters of helical coil on pressure drop in tube. Journal of ZheJiang University (Engineering Science), 2020, 54(8): 1620-1627.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2020.08.022        http://www.zjujournals.com/eng/CN/Y2020/V54/I8/1620

图 1  缠绕管压降测量实验装置
图 2  缠绕管结构示意图
编号 d/mm D/mm α/(°)
1 15.0 325 10
2 15.0 273 10
3 15.0 219 10
4 15.0 325 5
5 15.0 325 15
6 10.8 325 10
7 22.0 325 10
表 1  不同结构缠绕管的结构参数
图 3  不同缠绕直径缠绕管内压降随流速的变化规律
图 4  不同缠绕角度缠绕管内压降随流速的变化规律
图 5  不同管径缠绕管内压降随流速的变化规律
文献 缠绕管内摩擦系数关联式 流动条件 几何条件 研究体系
1)注:Dn为弯管中考虑曲率的流体力学无量纲参数,Dn=Re(d/D)0.5
文献[30] $\begin{aligned}\frac{ {f_{\rm c}} }{ {f_{\rm s}} } =& 1.0 + [8.279 \times {10^{ - 4} } + 7.964 \times {10^{ - 3} }/\lambda ]Re -\\& 2.096 \times {10^{ - 7} }R{e^2}\end{aligned}$ 34.64<Re<2 738.00 3<D/d<30 水、醋酸、正丁醇、二甘醇、酒精
文献[31] $\begin{aligned}f_{\rm c} = 0.029\;85 + \frac{ {75.89[0.5 - { {\tan }^{ - 1} }\left(\frac{ {Dn - 39.88} }{ {77.56} }\right)/\pi ]} }{ { { {\left(\frac{D}{ { {d_{ {{i} },{\rm{out} } } } - {d_{ {{o} },{\rm{in} } } } } }\right)}^{1.45} } } }\end{aligned}$ 210<Re<23000 di=12.700、9.525、6.350 mm分别对应
do=21.180、15.748、10.210 mm
空气、水
文献[32] $\begin{aligned}\frac{{f_{\rm s}}}{{f_{\rm c}}} = 1 - {\left(1 - {\left(\frac{{11.6}}{{Dn}}\right)^{0.45}}\right)^{\frac{1}{0.45}1)}}\end{aligned}$ Re<13000 D/d=5、15、50、2 050
文献[33] $\begin{aligned}\frac{f}{{f_{\rm s}}} = 1 + 0.14{R_0}^{0.97}R{e^{(1 - 0.644{R_0}^{0.312})}}\end{aligned}$ Re<2500 di/D=0.0363、0.061 0、0.0882、0.1050
文献[18] $\begin{aligned} f = \frac{{0.084}}{{R{e^{0.2}}}}{\left( {\frac{d}{D}} \right)^{0.1}}\end{aligned}$ 2500<Re<24880 di=33.725、45.187、49.775 mm
D=2450 mm
文献[19] $\begin{aligned} f = 1.334R{e^{ - 0.2}}{\left( {\frac{d}{D}} \right)^{0.1}}\end{aligned}$ Re<2100 0.0097<d/D<0.1350
文献[34] $\begin{aligned} f = 1.216R{e^{ - 0.25}} + 0.116{\left(\frac{d}{D}\right)^{0.5}}\end{aligned}$ Re<50000 di=31.54、31.92、32.08、32.46 mm
分别对应
D=258、1354、1606、10400 mm
文献[35] $\begin{aligned} f = 0.06 + 0.12{\left(\frac{d}{D}\right)^{0.275}}R{e^{ - 0.4}}\end{aligned}$ Re>50000 di=19.8 mm 水-空气气体质量分数为0.04~0.60
表 2  缠绕管内摩擦系数的经验关联式
图 6  文献经验公式计算缠绕管内压降值与实验值比较
图 7  Mccann预测模型计算的压降与实验值的相对误差对比图
图 8  不同结构缠绕管内预测理论压降与实验压降的对比图
图 9  不同结构缠绕管内预测理论压降与实验压降的对比图(压降大于8500 Pa)
图 10  Mccann模型及本研究模型计算结果与实验值的对比图
图 11  流体进入缠绕管内的流线图
图 12  速度分布图(d=10.8 mm)
条件 u/(m·s?1) d/D Re Dn
D=219,d=15.0,α=10° 1.3 0.068 19500 5103
D=273,d=15.0,α=10° 1.4 0.055 21000 5274
D=325,d=15.0,α=10° 1.5 0.046 22500 5156
D=325,d=15.0,α=5° 1.5 0.046 22500 4833
D=325,d=15.0,α=15° 1.5 0.046 22500 4833
D=325,d=10.8,α=10° 1.2 0.033 12960 2362
表 3  缠绕管内压降达到8500 Pa时的临界u、d/D、Re及Dn
图 13  不同实验条件下 $\xi $与压降的关系
1 WANG G, WANG D, PENG X, et al Experimental and numerical study on heat transfer and flow characteristics in the shell side of helically coiled trilobal tube heat exchanger[J]. Applied Thermal Engineering, 2019, 149: 772- 787
doi: 10.1016/j.applthermaleng.2018.11.055
2 SEPEHR M, HASHEMI S S, RAHJOO M, et al Prediction of heat transfer, pressure drop and entropy generation in shell and helically coiled finned tube heat exchangers[J]. Chemical Engineering Research and Design, 2018, 134: 277- 291
doi: 10.1016/j.cherd.2018.04.010
3 FSADNI A M, WHITTY J P M A review on the two-phase pressure drop characteristics in helically coiled tubes[J]. Applied Thermal Engineering, 2016, 103: 616- 638
doi: 10.1016/j.applthermaleng.2016.04.125
4 REDDY K V K, KUMAR B S P, GUGULOTHU R, et al CFD analysis of a helically coiled tube in tube heat exchanger[J]. Materials Today: Proceedings, 2017, 4 (2): 2341- 2349
doi: 10.1016/j.matpr.2017.02.083
5 KUMAR V, SAINI S, SHARMA M, et al Pressure drop and heat transfer study in tube-in-tube helical heat exchanger[J]. Chemical Engineering Science, 2006, 61 (13): 4403- 4416
doi: 10.1016/j.ces.2006.01.039
6 ANDRZEJCZYK R, MUSZYNSKI T, GOSZ M Experimental investigations on heat transfer enhancement in shell coil heat exchanger with variable baffles geometry[J]. Chemical Engineering and Processing-Process Intensification, 2018, 132: 114- 126
doi: 10.1016/j.cep.2018.08.017
7 陈永东, 吴晓红, 周兵 LNG 缠绕管式换热器试验研究中的热物性计算方法[J]. 天然气工业, 2011, 31 (6): 92- 97
CHEN Yong-dong, WU Xiao-hong, ZHOU Bing Calculation method of thermal properties in experimental study of LNG wound tubular heat exchangers[J]. Natural Gas Industry, 2011, 31 (6): 92- 97
doi: 10.3787/j.issn.1000-0976.2011.06.020
8 都跃良, 张贤安 缠绕管式换热器的管理及其应用前景分析[J]. 化工机械, 2005, 32 (3): 181- 185
DU Yue-liang, ZHANG Xian-an Management of winding tube heat exchanger and analysis of its application prospects[J]. Chemical Industry Machinery, 2005, 32 (3): 181- 185
doi: 10.3969/j.issn.0254-6094.2005.03.015
9 GOU J, MA H, YANG Z, et al An assessment of heat transfer models of water flow in helically coiled tubes based on selected experimental datasets[J]. Annals of Nuclear Energy, 2017, 110: 648- 667
doi: 10.1016/j.anucene.2017.07.015
10 BERSANO A, FALCONE N, BERTANI C, et al Conceptual design of a bayonet tube steam generator with heat transfer enhancement using a helical coiled downcomer[J]. Progress in Nuclear Energy, 2018, 108: 243- 252
doi: 10.1016/j.pnucene.2018.05.018
11 DEAN W R Note on the motion of fluid in a curved pipe[J]. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 1927, 4 (20): 208- 223
doi: 10.1080/14786440708564324
12 MOOSAVI A, ABBASALIZADEH M, DIZAJI H S Optimization of heat transfer and pressure drop characteristics via air bubble injection inside a shell and coiled tube heat exchanger[J]. Experimental Thermal and Fluid Science, 2016, 78: 1- 9
doi: 10.1016/j.expthermflusci.2016.05.011
13 MURATA S, MIYAKE Y, INABA T, et al Laminar flow in a helically coiled pipe[J]. Bulletin of JSME, 1981, 24 (188): 355- 362
doi: 10.1299/jsme1958.24.355
14 HüTTL T J, WAGNER C, FRIEDRICH R Navier-Stokes solutions of laminar flows based on orthogonal helical coordinates[J]. International Journal For Numerical Methods in Fluids, 1999, 29 (7): 749- 763
doi: 10.1002/(SICI)1097-0363(19990415)29:7<749::AID-FLD815>3.0.CO;2-4
15 ALI S Pressure drop correlations for flow through regular helical coil tubes[J]. Fluid Dynamics Research, 2001, 28 (4): 295
doi: 10.1016/S0169-5983(00)00034-4
16 GUO L, FENG Z, CHEN X An experimental investigation of the frictional pressure drop of steam-water two-phase flow in helical coils[J]. International Journal of Heat and Mass Transfer, 2001, 44 (14): 2601- 2610
doi: 10.1016/S0017-9310(00)00312-4
17 TRUESDELL J R L C, ADLER R J Numerical treatment of fully developed laminar flow in helically coiled tubes[J]. AIChE Journal, 1970, 16 (6): 1010- 1015
doi: 10.1002/aic.690160625
18 MCCANN R C. Frictional pressure loss during turbulent flow in coiled tubing [C]// SPD Gulf Coast Section/ICoTA North American Coiled Tubing Roundtable. Conroe: Society of Petroleum Engineers, 1996.
19 SRINIVASAN P S Pressure drop and heat transfer in coils[J]. Chemical Engineering, 1968, 218: 113- 119
20 MANLAPAZ R L, CHURCHILL S W Fully developed laminar flow in a helically coiled tube of finite pitch[J]. Chemical Engineering Communications, 1980, 7 (1?3): 57- 78
doi: 10.1080/00986448008912549
21 OWHADI A, BELL K J, CRAIN JR B Forced convection boiling inside helically-coiled tubes[J]. International Journal of Heat and Mass Transfer, 1968, 11 (12): 1779- 1793
doi: 10.1016/0017-9310(68)90021-5
22 JU H, XU Y, HUANG Z, et al Research method and two-phase flow stability of the steam generator of HTR-10[J]. Journal of Nuclear Science and Technology, 2001, 38 (9): 739- 744
doi: 10.1080/18811248.2001.9715090
23 BANDARU S K, CHHABRA R P Pressure drop for single and two-phase flow of non-newtonian liquids in helical coils[J]. The Canadian Journal of Chemical Engineering, 2002, 80 (2): 315- 321
doi: 10.1002/cjce.5450800219
24 MANDAL S N, DAS S K Gas-liquid flow through helical coils in vertical orientation[J]. Industrial and Engineering Chemistry Research, 2003, 42 (14): 3487- 3494
doi: 10.1021/ie0200656
25 DOWNING R S, KOJASOY G Single and two-phase pressure drop characteristics in miniature helical channels[J]. Experimental Thermal and Fluid Science, 2002, 26 (5): 535- 546
26 TOHIDI A, GHAFFARI H, NASIBI H, et al Heat transfer enhancement by combination of chaotic advection and nanofluids flow in helically coiled tube[J]. Applied Thermal Engineering, 2015, 86: 91- 105
doi: 10.1016/j.applthermaleng.2015.04.043
27 MORAVEJI M K, HEJAZIAN M CFD examination of convective heat transfer and pressure drop in a horizontal helically coiled tube with CuO/Oil base nanofluid[J]. Numerical Heat Transfer, Part A: Applications, 2014, 66: 315- 329
doi: 10.1080/10407782.2013.872976
28 JAYAKUMAR J S, MAHAJANI S M, MANDAL J C, et al Experimental and CFD estimation of heat transfer in helically coiled heat exchangers[J]. Chemical Engineering Research and Design, 2008, 86 (3): 221- 232
doi: 10.1016/j.cherd.2007.10.021
29 LEMENAND T, PEERHOSSAINI H A thermal model for prediction of the Nusselt number in a pipe with chaotic flow[J]. Applied Thermal Engineering, 2002, 22 (15): 1717- 1730
doi: 10.1016/S1359-4311(02)00075-3
30 TARBELL J M, SAMUELS M R Momentum and heat transfer in helical coils[J]. The Chemical Engineering Journal, 1973, 5 (2): 117- 127
doi: 10.1016/0300-9467(73)80002-4
31 XIN R C, AWWAD A, DONG Z F, et al An experimental study of single-phase and two-phase flow pressure drop in annular helicoidal pipes[J]. International Journal of Heat and Fluid Flow, 1997, 18 (5): 482- 488
doi: 10.1016/S0142-727X(97)80006-9
32 WHITE C M Streamline flow through curved pipes[J]. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character, 1929, 123 (792): 645- 663
doi: 10.1098/rspa.1929.0089
33 SCHMIDT E F W?rmeübergang und druckverlust in rohrschlangen[J]. Chemie Ingenieur Technik, 1967, 39 (13): 781- 789
doi: 10.1002/cite.330391302
34 ITō H Laminar flow in curved pipes[J]. Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik, 1969, 49 (11): 653- 663
doi: 10.1002/zamm.19690491104
[1] 谢乐,衡熙丹,刘洋,蒋启龙,刘东. 基于线性判别分析和分步机器学习的变压器故障诊断[J]. 浙江大学学报(工学版), 2020, 54(11): 2266-2272.
[2] 张雷,张立华,王家序,李俊阳,肖科. 基于响应面的柔轮应力和刚度分析[J]. 浙江大学学报(工学版), 2019, 53(4): 638-644.
[3] 孟嘉辉, 廖祖维, 蒋斌波, 黄正梁, 王靖岱, 阳永荣. 水蒸气处理对ZSM-5催化剂及甲醇制丙烯反应的影响[J]. 浙江大学学报(工学版), 2017, 51(12): 2451-2458.
[4] 满军, 丁凡, 李其朋, 笪靖, 邵森寅. 永磁屏蔽式耐高压高速开关电磁铁[J]. J4, 2012, 46(2): 309-314.
[5] 邓卫燕, 陆国栋, 王进, 陈龙. 基于图像的三维人体特征参数提取方法[J]. J4, 2010, 44(5): 837-840.
[6] 沈新荣 张明侃 麻剑锋 章本照. 方形截面弯管中的Oldroyd-B流体流动[J]. J4, 2008, 42(7): 1115-1118.
[7] 麻剑锋 沈新荣 章本照. S形复合管道周期流动的数值研究[J]. J4, 2006, 40(8): 1408-1412.
[8] 周俊虎 宋国良 刘建忠 岑可法. 浓相粉体给料器流化特性影响因素的分析[J]. J4, 2006, 40(7): 1168-1173.
[9] 麻剑锋 沈新荣 章本照 陈华军. 旋转环形偏心圆截面弯管内流动特性分析[J]. J4, 2005, 39(11): 1829-1832.