Please wait a minute...
浙江大学学报(工学版)  2020, Vol. 54 Issue (1): 196-201    DOI: 10.3785/j.issn.1008-973X.2020.01.023
生物医学工程、化学工程     
悬浮油滴在改性PAN纤维膜上的行为研究
魏颖颖(),姜东岳,付清腾,郭飞*()
大连理工大学 能源与动力学院,辽宁 大连 116024
Behaviors of aerosol oil droplets on modified PAN fibrous webs
Ying-ying WEI(),Dong-yue JIANG,Qing-teng FU,Fei GUO*()
School of Energy and Power Engineering, Dalian University of Technology, Dalian 116024, China
 全文: PDF(1524 KB)   HTML
摘要:

针对大气环境中的气溶胶悬浮油滴的过滤式处理,以PAN纤维膜为实验介质,研究气溶胶油滴在PAN纤维膜及改性处理后的PAN纤维膜上的富集规律和演变的行为. 实验结果表明,油滴在不同表面能的纤维上的结构不同. 油滴在PAN纤维上形成轴对称结构,在改性PAN纤维上形成非轴对称结构. 随着油滴在纤维上的富集,改性PAN纤维上的非轴对称油滴逐渐转变为轴对称油滴. 油滴在改性PAN纤维和PAN纤维上的最终形态都不能铺展形成液膜,而是形成轴对称的油滴. 通过测量纤维膜压力降和液体穿透压可以发现,改性PAN纤维膜相比原始PAN纤维膜,能够避免油滴浸润,具有阻隔油滴侵入纤维膜内部的作用.

关键词: 静电纺丝PAN纤维膜表面改性PM2.5气溶胶油滴    
Abstract:

The morphology and evolution of aerosol oil droplets on PAN fibrous webs and modified PAN fibrous webs was analyzed based on the filtration treatment of aerosol suspending oil droplets in the atmosphere. The experimental results show that aerosol oil droplets exhibit different structures and evolution behaviors on fibrous webs with different surface energy. Aerosol oil droplets form axisymmetric structures on PAN fibers and non-axisymmetric structures on modified PAN fibers. Non-axisymmetric structure of aerosol oil droplets on modified PAN fibers switches to axisymmetric structure during the growth of aerosol oil droplets on the fibers. The final structure of aerosol oil droplets on the modified PAN fibers and PAN fibers do not form the liquid film on the fibers, and form large axisymmetric aerosol oil droplets. The pressure drop and the liquid entry pressure of the fibrous membrane were measured. Results show that modified PAN fibrous membrane can prevent aerosol oil droplets from infiltrating compared to original PAN fibrous membranes and have the function of blocking aerosol oil droplets from invading the fibrous membranes.

Key words: electrospinning    PAN fibrous membrane    surface modification    PM2.5    aerosol oil droplet
收稿日期: 2018-11-28 出版日期: 2020-01-05
CLC:  TQ 028  
基金资助: 大连市青年科技之星资助项目(2017RQ027);中央高校基本科研业务费专项资金资助项目(DUT17JC05)
通讯作者: 郭飞     E-mail: weiyingying@mail.dlut.edu.cn;feiguo@dlut.edu.cn
作者简介: 魏颖颖(1994—),女,硕士生,从事纤维膜及相关应用研究. orcid.org/0000-0003-0902-8125. E-mail: weiyingying@mail.dlut.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
魏颖颖
姜东岳
付清腾
郭飞

引用本文:

魏颖颖,姜东岳,付清腾,郭飞. 悬浮油滴在改性PAN纤维膜上的行为研究[J]. 浙江大学学报(工学版), 2020, 54(1): 196-201.

Ying-ying WEI,Dong-yue JIANG,Qing-teng FU,Fei GUO. Behaviors of aerosol oil droplets on modified PAN fibrous webs. Journal of ZheJiang University (Engineering Science), 2020, 54(1): 196-201.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2020.01.023        http://www.zjujournals.com/eng/CN/Y2020/V54/I1/196

wB/
%
v/
(mL·min?1
U/kV n/
(r·min?1
l/
cm
t/
μm
d/μm
正电 负电
11.5 0.02 +18 ?4 40 20 60±2 0.17±0.02
14 0.02 +19 ?4 40 20 64±2 0.32±0.03
18 0.02 +20 ?4 40 20 64±4 0.58±0.01
表 1  静电纺丝参数和纤维膜参数
图 1  引发式化学气相沉积(iCVD)装置示意图
图 2  纤维膜压力降测量装置的示意图
图 3  光学显微镜照片
图 4  气溶胶油滴被不同纤维捕获的光学显微镜照片
图 5  纤维长时间捕捉气溶胶油滴的图像和示意图
图 6  纤维膜压力降和液体穿透压实验数据
1 LIN Y, ZOU J, YANG W, et al A Review of recent advances in research on PM2.5 in China [J]. International Journal of Environmental Research and Public Health, 2018, 15 (3): 438
doi: 10.3390/ijerph15030438
2 LU F, XU D, CHENG Y, et al Systematic review and meta-analysis of the adverse health effects of ambient PM2.5 and PM10 pollution in the Chinese population [J]. Environmental Research, 2015, 136: 196- 204
doi: 10.1016/j.envres.2014.06.029
3 杨洪斌, 邹旭东, 汪宏宇, 等 大气环境中PM2.5的研究进展与展望 [J]. 气象与环境学报, 2012, 28 (3): 77- 82
YANG Hong-bin, ZOU Xu-dong, WANG Hong-yu, et al Study progress on PM2.5 in atmospheric environment [J]. Journal of Meteorology and Environment, 2012, 28 (3): 77- 82
doi: 10.3969/j.issn.1673-503X.2012.03.014
4 HOEK G, KRISHNAN R M, BEELEN R, et al Long-term air pollution exposure and cardio-respiratory mortality: a review[J]. Environmental Health, 2013, 12 (1): 43
doi: 10.1186/1476-069X-12-43
5 BETHA R, BEHERA S N, BALASUBRAMANIAN R 2013 Southeast Asian smoke haze: fractionation of particulate-bound elements and associated health risk[J]. Environmental Science and Technology, 2014, 48 (8): 4327- 4335
doi: 10.1021/es405533d
6 HINDS W C Aerosol technology: properties, behavior, and measurement of airborne particles[J]. Journal of Aerosol Science, 1999, 31 (9): 1121- 1122
7 杜晓明, 徐忠厚, 韩春媚, 等 静电纺丝过氯乙烯纳米纤维膜对PM10去除效果的研究 [J]. 环境科学研究, 2006, 19 (1): 46- 48
DU Xiao-ming, XU Zhong-hou, HAN Chun-mei, et al Research on purification effect of electrospun chlorinated PVC nanofibrous membrane for PM10[J]. Research of Environmental Sciences, 2006, 19 (1): 46- 48
doi: 10.3321/j.issn:1001-6929.2006.01.012
8 梁斌, 王建强, 潘凯, 等 静电纺丝纳米纤维在膜分离中的研究进展[J]. 高分子通报, 2013, (4): 99- 108
LIANG Bin, WANG Jian-qiang, PAN Kai, et al Development of electrospinning nanofibers for membrane separation[J]. Polymer Bulletin, 2013, (4): 99- 108
9 HUNG C H, LEUNG W F, SEPPUR J, et al Filtration of nano-aerosol using nanofiber filter under low Peclet number and transitional flow regime[J]. Separation and Purification Technology, 2011, 79 (1): 34- 42
doi: 10.1016/j.seppur.2011.03.008
10 ZHANG R, LIU C, HSU P C, et al Nanofiber air filters with high-temperature stability for efficient PM2.5 removal from the pollution sources[J]. Nano Letters, 2016, 16 (6): 3642- 3649
doi: 10.1021/acs.nanolett.6b00771
11 LIU C, HSU P C, LEE H W, et al Transparent air filter for high-efficiency PM2.5 capture [J]. Nature Communications, 2015, 6 (6205): 1- 9
12 LIU K, XIAO Z, MA P, et al Large scale poly(vinyl alcohol-co-ethylene)/TiO2 hybrid nanofibrous filters with efficient fine particle filtration and repetitive-use performance [J]. RSC Advances, 2015, 5 (107): 87924- 87931
doi: 10.1039/C5RA15620C
13 WANG N, SI Y, WANG N, et al Multilevel structured polyacrylonitrile/silica nanofibrous membranes for high-performance air filtration[J]. Separation and Purification Technology, 2014, 126 (15): 44- 51
14 JI L, SAQUING C, KHAN S A, et al Preparation and characterization of silica nanoparticulate-polyacrylonitrile composite and porous nanofibers[J]. Nanotechnology, 2008, 19 (8): 85605
doi: 10.1088/0957-4484/19/8/085605
15 GUPTA M, GLEASON K K Initiated chemical vapor deposition of poly(1H,1H,2H,2H-perfluorodecyl Acrylate) thin films[J]. Langmuir, 2006, 22 (24): 10047- 10052
doi: 10.1021/la061904m
16 ZHANG R, LIU B, YANG A, et al In situ investigation on the nanoscale capture and evolution of aerosols on nanofibers[J]. Nano Letters, 2018, 18 (2): 1130- 1138
doi: 10.1021/acs.nanolett.7b04673
17 ZHENG Y, BAI H, HUANG Z, et al Directional water collection on wetted spider silk[J]. Nature, 2010, 463 (7281): 640- 643
doi: 10.1038/nature08729
18 CONG S, LIU X H, GUO F Membrane distillation using surface modified multilayer porous ceramics[J]. International Journal of Heat and Mass Transfer, 2019, 129: 764- 772
doi: 10.1016/j.ijheatmasstransfer.2018.10.011
19 GUO F, SERVI A, LIU A, et al Desalination by membrane distillation using electrospun polyamide fiber membranes with surface fluorination by chemical vapor deposition[J]. ACS Applied Materials and Interfaces, 2015, 7 (15): 8225- 8232
doi: 10.1021/acsami.5b01197
20 郭飞, 从硕, 董建华, 等. 材料微观表面共型镀膜系统: 201721208274.5[P]. 2018-05-08.
21 CASSIE A B D, BAXTER S Wettability of porous surfaces[J]. Transactions of the Faraday Society, 1944, 40 (1): 546- 551
22 CAI J, LIU X, ZHAO Y, et al Membrane desalination using surface fluorination treated electrospun polyacrylonitrile membranes with nonwoven structure and quasi-parallel fibrous structure[J]. Desalination, 2018, 429: 70- 75
doi: 10.1016/j.desal.2017.12.019
23 GENNES P G D, BROCHARD-WYART F, QUéRé D. Capillarity and wetting phenomena: drops, bubbles, pearls, waves [M]. New York: Springer, 2004: 1700.
[1] 姚勇,杨贞军,张麒. 硅烷涂层提升钢纤维-砂浆界面性能的试验研究[J]. 浙江大学学报(工学版), 2021, 55(1): 1-9.
[2] 徐鸿 骆仲泱 王鹏 徐飞 岑可法. 声波团聚对燃煤电厂可吸入颗粒物的排放控制[J]. J4, 2007, 41(7): 1168-1171.