计算机科学与人工智能 |
|
|
|
|
基于动态任务迁移的近数据处理方法 |
华幸成( ),刘鹏*( ) |
浙江大学 信息与电子工程学院,浙江 杭州 310027 |
|
Near-data processing based on dynamic task offloading |
Xing-cheng HUA( ),Peng LIU*( ) |
College of Information Science and Electronic Engineering, Zhejiang University, Hangzhou 310027, China |
1 |
SIEGL P, BUCHTY R, BEREKOVIC M. Data-centric computing frontiers: A survey on processing-in-memory [C] // Proceedings of the Second International Symposium on Memory Systems. Alexandria: ACM, 2016: 295-308
|
2 |
DEAN J, GHEMAWAT S MapReduce: simplified data processing on large clusters[J]. Communications of the ACM, 2008, 51 (1): 107- 113
doi: 10.1145/1327452.1327492
|
3 |
WANG L, ZHAN J, LUO C, et al. Bigdatabench: A big data benchmark suite from internet services [C] // IEEE International Symposium on High Performance Computer Architecture. Orlando: IEEE, 2014: 488-499
|
4 |
KECKLER S W, DALLY W J, KHAILANY B, et al GPUs and the future of parallel computing[J]. IEEE Micro, 2011, 31 (5): 7- 17
doi: 10.1109/MM.2011.89
|
5 |
BALASUBRAMONIAN R, CHANG J, MANNING T, et al Near-data processing: insights from a micro-46 workshop[J]. IEEE Micro, 2014, 34 (4): 36- 42
doi: 10.1109/MM.2014.55
|
6 |
LEE D U, KIM K W, KIM K W, et al. A 1.2 V 8Gb 8-channel 128 GB/s high-bandwidth memory (HBM) stacked DRAM with effective microbump I/O test methods using 29 nm process and TSV [C] // IEEE International Solid-State Circuits Conference Digest of Technical Papers. San Francisco : IEEE, 2014: 432−433
|
7 |
Hybrid memory cube specification 2.1[EB/OL]. [2018-01-19]. http://hybridmemorycube.org/.
|
8 |
GUTIERREZ A, CIESLAK M, GIRIDHAR B, et al. Integrated 3D-stacked server designs for increasing physical density of key-value stores [C] // ACM SIGPLAN Notices. Salt Lake City : ACM, 2014: 485−498.
|
9 |
AHN J, HONG S, YOO S, et al A scalable processing-in-memory accelerator for parallel graph processing[J]. ACM SIGARCH Computer Architecture News, 2016, 43 (3): 105- 117
|
10 |
AZARKHISH E, ROSSI D, LOI I, et al. Design and evaluation of a processing-in-memory architecture for the smart memory cube [C] // International Conference on Architecture of Computing Systems. Nuremberg: Springer, 2016: 19−31.
|
11 |
NAI L, HADIDI R, SIM J, et al. Graphpim: Enabling instruction-level pim offloading in graph computing frameworks [C] // IEEE International Symposium on High Performance Computer Architecture. Austin: IEEE, 2017: 457−468.
|
12 |
AZARKHISH E, ROSSI D, LOI I, et al Neurostream: Scalable and energy efficient deep learning with smart memory cubes[J]. IEEE Transactions on Parallel and Distributed Systems, 2018, 29 (2): 420- 434
doi: 10.1109/TPDS.2017.2752706
|
13 |
PUGSLEY S H, JESTES J, ZHANG H, et al. NDC: Analyzing the impact of 3D-stacked memory+ logic devices on MapReduce workloads [C] // IEEE International Symposium on Performance Analysis of Systems and Software. Monterey: IEEE, 2014: 190−200.
|
14 |
Apache Hadoop [EB/OL]. [2018-01-19]. http://hadoop.apache.org/.
|
15 |
KOGGE P M. EXECUBE-A new architecture for scaleable MPPs [C] // International Conference on Parallel Processing. North Carolina: IEEE, 1994: 77−84.
|
16 |
PATTERSON D, ANDERSON T, CARDWELL N, et al A case for intelligent DRAM: IRAM[J]. IEEE Micro, 1997, 33- 44
|
17 |
OSKIN M, CHONG F T, SHERWOOD T. Active Pages: a computation model for intelligent memory [C] // Proceedings of the International Symposium on Computer Architecture. Barcelona: IEEE, 1998: 192−203.
|
18 |
CHU M, JAYASENA N, ZHANG D, et al. High-level programming model abstractions for processing in memory [C] // Workshop on Near-Data Processing. California: IEEE, 2013: 1−4.
|
19 |
GAO M, AYERS G, KOZYRAKIS C. Practical near-data processing for in-memory analytics frameworks [C] // International Conference on Parallel Architecture and Compilation. San Francisco: IEEE, 2015: 113−124.
|
20 |
BINKERT N, BECKMANN B, BLACK G, et al The gem5 simulator[J]. ACM SIGARCH Computer Architecture News, 2011, 39 (2): 1- 7
doi: 10.1145/2024716.2024718
|
21 |
TUDOR B M, TEO Y M. On understanding the energy consumption of arm-based multicore servers [C] // ACM SIGMETRICS Performance Evaluation Review. Pittsburgh: ACM, 2013: 267−278.
|
22 |
CACTI: An integrated cache and memory access time, cycle time, area, leakage, and dynamic power model [EB/OL]. [2018-01-19]. http://www.hpl.hp.com/research/cacti/.
|
23 |
CHANDRASEKAR K, AKESSON B, GOOSSENS K. Improved power modeling of DDR SDRAMs [C] // Euromicro Conference on Digital System Design. Oulu: IEEE, 2011: 99−108.
|
24 |
PAWLOWKI J T. Hybrid memory cube: breakthrough DRAM performance with a fundamentally re-architected DRAM subsystem[C] // Hot Chips. Stanford: IEEE, 2011: 1−24.
|
25 |
JEDDELOH J, KEETH B. Hybrid memory cube new DRAM architecture increases density and performance [C] // Symposium on VLSI Technology. Honolulu: IEEE, 2012: 87−88.
|
26 |
ROSENFELD P. Performance exploration of the hybrid memory cube[D]. Maryland: University of Maryland, 2014.
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|