Please wait a minute...
浙江大学学报(工学版)  2019, Vol. 53 Issue (11): 2058-2066    DOI: 10.3785/j.issn.1008-973X.2019.11.002
机械工程     
大尺寸板状构件超声阵列悬浮技术
武二永1(),韩烨1,2,李立强1,邓双1,杨克己1
1. 浙江大学 流体动力与机电系统国家重点实验室,浙江 杭州 310027
2. 中石化长输油气管道检测有限公司,江苏 徐州 221008
Ultrasonic array levitation technology for large size plate like components
Er-yong WU1(),Ye HAN1,2,Li-qiang LI1,Shuang DENG1,Ke-ji YANG1
1. State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou 310027, China
2. SINOPEC Long-distance Oil and Gas Pipeline Inspection Co. Ltd, Xuzhou 221008, China
 全文: PDF(1546 KB)   HTML
摘要:

为了提高超声悬浮性能及其柔性化应用能力,满足包括集成电路硅片和太阳能电池极板等构件的非接触抓取和输运的应用需求,开展基于换能器阵列的大尺寸板状构件超声悬浮技术研究. 采用空间脉冲响应函数法,建立换能器阵列非自由超声场的声压分布及该声场内悬浮体所受声辐射力的理论表达式,结合COMSOL软件进行仿真研究,验证该理论表达式的正确性. 搭建基于换能器阵列的超声悬浮实验装置,分别开展同一激励电压不同尺寸硅片以及同一尺寸硅片不同激励电压下的声悬浮实验. 结果表明:该技术可以实现对尺寸远大于波长的物体在稳定高度的超声悬浮,且当悬浮体的重量小于超声阵列的最大负载能力时,悬浮高度随物体尺寸和激励电压的变化不明显.

关键词: 大尺寸板状构件换能器阵列超声悬浮声场控制声辐射力    
Abstract:

In order to increase the ultrasonic levitation performance and its flexible application ability, and satisfy the noncontact grasping and transportation application requirements for the components including but not limited to integrated circuit silicon wafer and solar cell plate, a ultrasonic levitation technology based on the transducer array for large size plate like components was studied. Using the spatial impulse response method, the theoretical expressions for transducer array’s sound pressure distribution in non-free ultrasonic field and the acoustic radiation force at levitated object were established. These theoretical expressions’ correctness was verified by simulation results of COMSOL software. The ultrasonic levitation experimental device based on the transducer array was set up, and the acoustic levitation experiments for variable size silicon wafer under the same excited voltage and fixed size silicon wafer under variable excited voltages were carried out. Experimental results show that the proposed technology can realize stable height ultrasonic levitation of object whose size is far larger than the wavelength, and when the levitated object’s weight is less than the ultrasonic array maximum load capacity, the levitation height is not obvious related to the object size and the excited voltage.

Key words: large size plate like component    transducer array    ultrasonic levitation    acoustic field control    acoustic radiation force
收稿日期: 2019-04-11 出版日期: 2019-11-21
CLC:  TB 553  
基金资助: 国家自然科学基金资助项目(51675480,51175465)
作者简介: 武二永(1980—),男,讲师,从事超声工程及其应用研究. orcid.org/0000-0003-0786-9756. E-mail: wueryong@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
武二永
韩烨
李立强
邓双
杨克己

引用本文:

武二永,韩烨,李立强,邓双,杨克己. 大尺寸板状构件超声阵列悬浮技术[J]. 浙江大学学报(工学版), 2019, 53(11): 2058-2066.

Er-yong WU,Ye HAN,Li-qiang LI,Shuang DENG,Ke-ji YANG. Ultrasonic array levitation technology for large size plate like components. Journal of ZheJiang University (Engineering Science), 2019, 53(11): 2058-2066.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2019.11.002        http://www.zjujournals.com/eng/CN/Y2019/V53/I11/2058

图 1  圆形换能器阵元声场计算坐标
图 2  自由空间内超声阵列空间脉冲响应计算模型
图 3  平面反射作用下实际与虚拟声源的y-z平面分布
图 4  单换能器阵元的自由声场仿真模型
图 5  单换能器阵元的自由声场仿真结果
图 6  自由空间和存在悬浮体的声场仿真结果
图 7  声悬浮仿真简化模型
图 8  不同悬浮高度下的声场分布
图 9  归一化悬浮力与悬浮高度之间的关系
图 10  基于换能器阵列的超声悬浮实验装置
图 11  悬浮高度与硅片尺寸之间的关系
图 12  非规则外形硅片的超声悬浮实验结果
图 13  硅片悬浮高度随激励电压变化的实验结果
图 14  超声阵列悬浮能力与激励电压之间关系的实验结果
1 KING L V On the acoustic radiation pressure on spheres[J]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 1934, 147 (861): 212- 240
doi: 10.1098/rspa.1934.0215
2 GOR′KOV L P Forces acting on a small particle in an acoustic field within an ideal fluid[J]. Doklady Akademii Nauk SSSR, 1961, 140 (1): 88- 91
3 ZHAO S, WALLASCHEK J A standing wave acoustic levitation system for large planar objects[J]. Archive of Applied Mechanics, 2011, 81 (2): 123- 139
doi: 10.1007/s00419-009-0401-3
4 SETTNES M, BRUUS H Forces acting on a small particle in an acoustical field in a viscous fluid[J]. Physical Review E, 2012, 85 (1): 016327
doi: 10.1103/PhysRevE.85.016327
5 李新波, 王英伟, 王宇昆, 等 凹球面双发射极超声阵列悬浮能力研究[J]. 西安交通大学学报, 2018, 52 (11): 1- 5
LI Xin-bo, WANG Ying-wei, WANG Yu-kun, et al Study on the suspension capacity of concave spherical double emitter ultrasonic array[J]. Journal of Xi'an Jiaotong University, 2018, 52 (11): 1- 5
6 DENG S, JIA K, WU E, et al Controllable micro-particle rotation and transportation using sound field synthesis technique[J]. Applied Sciences, 2018, 8 (73): 1- 16
7 PRISBREY M, GREENHALL J, VASQUEZ F G, et al Ultrasound directed self-assembly of three-dimensional user-specified patterns of particles in a fluid medium[J]. Journal of Applied Physics, 2017, 121 (1): 014302
doi: 10.1063/1.4973190
8 CASTLE J, BUTTS M, HEALEY A, et al Ultrasound-mediated targeted drug delivery: recent success and remaining challenges[J]. American Journal of Physiology-heart and Circulatory Physiology, 2013, 304 (3): 350- 357
doi: 10.1152/ajpheart.00265.2012
9 GUO F, LI P, FRENCH J B, et al Controlling cell-cell interactions using surface acoustic waves[J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112 (1): 43- 48
doi: 10.1073/pnas.1422068112
10 SANTESSON S, NILSSON S Airborne chemistry: acoustic levitation in chemical analysis[J]. Analytical and Bioanalytical Chemistry, 2004, 378 (7): 1704- 1709
doi: 10.1007/s00216-003-2403-2
11 VANDAELE V, DELCHAMBRE A, LAMBERT P Acoustic wave levitation: handling of components[J]. Journal of Applied Physics, 2011, 109 (12): 124901
doi: 10.1063/1.3594245
12 SANTESSON S, JOHANSSON J, TAYLOR L S, et al Airborne chemistry coupled to raman spectroscopy[J]. Analytical Chemistry, 2003, 75 (9): 2177- 2180
doi: 10.1021/ac026302w
13 SCHEELINE A, BEHRENS R L Potential of levitated drops to serve as microreactors for biophysical measurements[J]. Biophysical Chemistry, 2012, 165/166: 1- 12
doi: 10.1016/j.bpc.2012.03.008
14 ANDRADE M A B, BERNASSAU A L, ADAMOWSKI J C Acoustic levitation of a large solid sphere[J]. Applied Physics Letters, 2016, 109: 044101
doi: 10.1063/1.4959862
15 HANSON A R, DOMICH E G, ADAMS H S Acoustical liquid drop holder[J]. Review of Scientific Instruments, 1964, 35 (8): 1031- 1034
doi: 10.1063/1.1718916
16 ANDRADE M A, BUIOCHI F, ADAMOWSKI J C Finite element analysis and optimization of a single-axis acoustic levitator[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2010, 57 (2): 469- 479
doi: 10.1109/TUFFC.2010.1427
17 BAER S, ANDRADE M A B, ESEN C, et al Analysis of the particle stability in a new designed ultrasonic levitation device[J]. Review of Scientific Instruments, 2011, 82 (10): 105- 111
18 解文军. 声悬浮优化设计理论及其应用研究[D]. 西安: 西北工业大学, 2002.
XIE Wen-jun. Optimization theory of acoustic levitation and its experimental applications [D]. Xi'an: Northwestern Polytechnical University, 2002.
19 潘祥生, 邢立华, 李勋, 等 聚焦式超声悬浮[J]. 北京航空航天大学学报, 2006, 32 (1): 79- 82
PAN Xiang-sheng, XING Li-hua, LI XUN, et al Focusing ultrasonic levitation[J]. Journal of Beijing University of Aeronautics and Astronautics, 2006, 32 (1): 79- 82
doi: 10.3969/j.issn.1001-5965.2006.01.019
20 FORESTI D, NABAVI M, KLINGAUF M, et al Acoustophoretic contactless transport and handling of matter in air[J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110 (31): 12549- 12554
doi: 10.1073/pnas.1301860110
21 HOSHI T, OCHIAI Y, REKIMOTO J Three-dimensional noncontact manipulation by opposite ultrasonic phased arrays[J]. Japanese Journal of Applied Physics, 2014, 53 (7S): 07KE07
doi: 10.7567/JJAP.53.07KE07
22 DENG S, JIA K, CHEN J, et al Relative position control and coalescence of independent microparticles using ultrasonic waves[J]. Journal of Applied Physics, 2017, 121 (18): 184503
doi: 10.1063/1.4983015
23 MARZO A, CORKETT T, DRINKWATER B W Ultraino: an open phased-array system for narrowband airborne ultrasound transmission[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2018, 65 (1): 102- 111
doi: 10.1109/TUFFC.2017.2769399
24 SILVA G T, BAGGIO A L Designing single-beam multitrapping acoustical tweezers[J]. Ultrasonics, 2015, 56 (4): 49- 55
25 MARZO A, SEAH S A, DRINKWATER B W, et al Holographic acoustic elements for manipulation of levitated objects[J]. Nature Communications, 2015, 6: 8661
doi: 10.1038/ncomms9661
26 MARZO A, BARNES A, DRINKWATER B W TinyLev: a multi-emitter single-axis acoustic levitator[J]. Review of Scientific Instruments, 2017, 88: 085105
doi: 10.1063/1.4989995
27 孙运涛, 陈超 基于近声场的超声悬浮试验[J]. 振动测试与诊断, 2011, 31 (5): 578- 581
SUN Yun-tao, CHEN Chao Experimental study of ultrasonic levitation based on near-sound-field[J]. Journal of Vibration, Measurement and Diagnosis, 2011, 31 (5): 578- 581
28 马希直, 王胜光, 王挺 近场超声悬浮承载能力及影响因素的理论及实验研究[J]. 中国机械工程, 2013, 24 (20): 2785- 2790
MA Xi-zhi, WANG Sheng-guang, WANG Ting Research on load-carrying capacity of NFUL and its influencing factor[J]. China Mechanical Engineering, 2013, 24 (20): 2785- 2790
doi: 10.3969/j.issn.1004-132X.2013.20.016
29 LIU P, LI J, DING H, et al Modeling and experimental study on near-field acoustic levitation by flexural mode[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2009, 56 (12): 2679- 2685
doi: 10.1109/TUFFC.2009.1358
30 AMANO T, KOIKE Y, NAKAMURA K, et al A multi-transducer near field acoustic levitation system for noncontact transportation of large-sized planar objects[J]. Japanese Journal of Applied Physics, 2000, 39 (5B): 2982- 2985
31 REINHART G, HOEPPNER J Non-contact handling using high-intensity ultrasonics[J]. CIRP Annals-Manufacturing Technology, 2000, 49 (1): 5- 8
doi: 10.1016/S0007-8506(07)62884-4
32 IDE T, FRIEND J R, NAKAMURA K, et al A low-profile design for the noncontact ultrasonically levitated stage[J]. Japanese Journal of Applied Physics, 2005, 44 (6B): 4662- 4665
doi: 10.1143/JJAP.44.4662
33 HASHIMOTO Y, KOIKE Y, UEHA S Transporting objects without contact using flexural traveling waves[J]. The Journal of the Acoustical Society of America, 1998, 103 (6): 3230- 3233
doi: 10.1121/1.423039
34 ANDRADE M A, OKINA F T, BERNASSAU A L, et al Acoustic levitation of an object larger than the acoustic wavelength[J]. The Journal of the Acoustical Society of America, 2017, 141 (6): 4148- 4154
doi: 10.1121/1.4984286
35 ZENG X, MCGOUGH R J Optimal simulations of ultrasonic fields produced by large thermal therapy arrays using the angular spectrum approach[J]. The Journal of the Acoustical Society of America, 2009, 125 (5): 2967- 2977
doi: 10.1121/1.3097499
36 TENGELSEN D R, ANDERSON B E, VILLAMIZAR V, et al Finite-difference simulations of transient radiation from a finite-length pipe[J]. The Journal of the Acoustical Society of America, 2014, 135 (1): 17- 26
doi: 10.1121/1.4835915
37 GENGEMBRE N, LHéMERY A Pencil method in elastodynamics: application to ultrasonic field computation[J]. Ultrasonics, 2000, 38 (1–8): 495- 499
doi: 10.1016/S0041-624X(99)00068-2
38 LOCKWOOD J, WILLETTE J High-speed method for computing the exact solution for the pressure variations in the nearfield of a baffled piston[J]. The Journal of the Acoustical Society of America, 1973, 53 (3): 735- 741
doi: 10.1121/1.1913385
39 马宏伟, 董明, 陈渊, 等 基于矩形换能器空间脉冲响应的相控阵声场研究[J]. 机械工程学报, 2014, 50 (18): 36- 42
MA Hong-wei, DONG Ming, CHEN Yuan, et al Research on acoustic field of ultrasonic linear phased array based on spatial impulse response of rectangular planar transducer[J]. Journal of Mechanical Engineering, 2014, 50 (18): 36- 42
40 BRUUS H Acoustofluidics 1: governing equations in microfluidics[J]. Lab on a Chip, 2011, 11 (22): 3742- 3751
doi: 10.1039/c1lc20658c
41 BRUUS H Acoustofluidics 2: perturbation theory and ultrasound resonance modes[J]. Lab on a Chip, 2012, 12 (1): 20- 28
doi: 10.1039/C1LC20770A
42 UEHA S, HASHIMOTO Y, KOIKE Y Non-contact transportation using near-field acoustic levitation[J]. Ultrasonics, 2000, 38 (1–8): 26- 32
doi: 10.1016/S0041-624X(99)00052-9
43 CHU B T, APFEL R E Acoustic radiation pressure produced by a beam of sound[J]. The Journal of the Acoustical Society of America, 1982, 72 (6): 1673- 1687
doi: 10.1121/1.388660
[1] 杨克己 田少华. 基于机器微视觉的超声辐射力测量技术[J]. J4, 2008, 42(2): 197-202.
[2] 梅德庆 杨克己 丁伟森. 基于相位调整的三维超声微操纵技术[J]. J4, 2008, 42(11): 1940-1945.