Please wait a minute...
浙江大学学报(工学版)  2019, Vol. 53 Issue (5): 932-939    DOI: 10.3785/j.issn.1008-973X.2019.05.014
土木与水利工程     
澜沧江自然条件下输沙质量通量与体积径流量的关系
孙志林1(),陈震宇1,邓争志1,戴俣俣2,许丹1
1. 浙江大学 海洋学院,浙江 杭州 310058
2. 华东勘测设计研究院有限公司,浙江 杭州 311122
Relation between sediment mass flux and volume runoff under natural condition of Lancang River
Zhi-lin SUN1(),Zhen-yu CHEN1,Zheng-zhi DENG1,Yu-yu DAI2,Dan XU1
1. Ocean College, Zhejiang University, Hangzhou 310058, China
2. Huadong Engineering Co. Ltd, Hangzhou 311122, China
 全文: PDF(1010 KB)   HTML
摘要:

为了研究澜沧江水沙关系和提高利用体积径流量预测泥沙质量通量的准确性,以电站建设前1982—2000年澜沧江上游旧州站和中游戛旧站沙的质量浓度和体积径流量实测资料为研究对象,根据自然状态下泥沙质量通量和体积径流量变化幅度的差异,建立输沙质量通量导数与体积径流量的关系式. 公式系数为流域系统属性的综合反映,表示平均体积径流量下输沙质量通量的变化率,公式指数表示体积径流量变化对输沙质量通量变化率的影响. 根据上中游站的指数差异可知,泥沙质量通量除依赖上游来沙外还依赖沿程冲刷和支流入汇的补给. 通过对输沙质量通量导数公式进行积分得出输沙质量通量与体积径流量的理论关系. 结果表明,输沙质量通量峰值约落后体积径流量峰值1 d,据此优化反向传播神经网络(BP-NN),可以较好地改良优化前模型预测中的峰值偏移现象,提高预测精度.

关键词: 澜沧江输沙质量通量体积径流量峰值不同步反向传播神经网络(BP-NN)    
Abstract:

The relationship between sediment mass flux derivative and volume runoff was developed according to the difference in rangeability of sediment mass flux and volume runoff under natural condition. Based on the measured data of sediment mass concentration and volume runoff of the upriver Jiuzhou station and the middleriver Gajiu station of Lancang River from 1982 to 2000 before the construction of the power station, this work studied the relation between water and sediment in Lancang River and improved the accuracy of using the volume runoff to predict the sediment mass flux. The coefficient of formula comprehensively reflectes the property of the basin system and represents the change rate of sediment mass flux at mean volume runoff. The index of formula reflectes the influence of volume runoff change on the change rate of sediment mass flux. The difference of indexes between upriver and middleriver stations shows that the sediment mass flux not only depends on the upstream sediment, but also on the alongshore erosion and the recharge of tributaries. The theoretical relationship between sediment mass flux and volume runoff is obtained by the integration of derivative formula of sediment mass flux. Results show that the peak of volume runoff appeares one day before the peak of sediment mass flux, based on which the back-propagation neural network (BP-NN) can be optimized. The optimized method can be used to better improve the peak shift phenomenon predicted by the original model and improve the prediction accuracy.

Key words: Lancang River    sediment mass flux    volume runoff    peak asynchrony    back propagation neural network (BP-NN)
收稿日期: 2018-03-19 出版日期: 2019-05-17
CLC:  TV 14  
作者简介: 孙志林(1956—),男,教授,从事水沙动力学及河口海岸数值模拟研究. orcid.org/0000-0002-6646-3472. E-mail: oceansun@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
孙志林
陈震宇
邓争志
戴俣俣
许丹

引用本文:

孙志林,陈震宇,邓争志,戴俣俣,许丹. 澜沧江自然条件下输沙质量通量与体积径流量的关系[J]. 浙江大学学报(工学版), 2019, 53(5): 932-939.

Zhi-lin SUN,Zhen-yu CHEN,Zheng-zhi DENG,Yu-yu DAI,Dan XU. Relation between sediment mass flux and volume runoff under natural condition of Lancang River. Journal of ZheJiang University (Engineering Science), 2019, 53(5): 932-939.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2019.05.014        http://www.zjujournals.com/eng/CN/Y2019/V53/I5/932

图 1  澜沧江干流水电站示意图
图 2  旧州站及戛旧站1982年汛期日均体积径流量和日输沙质量通量
洪水 日期 qV/(m3·s?1) ρ/(kg·m?3) Q/(105 t)
第1次 6.28 2 460 1.56 3.31
6.29 2 540 1.40 3.08
6.30 2 890 1.83 4.58
7.1 2 830 2.39 5.84
7.2 2 770 2.01 4.82
第2次 7.22 3 250 1.47 7.21
7.23 3 790 2.35 7.69
7.24 4 230 2.70 9.85
7.25 3 870 3.31 11.06
7.26 3 150 2.49 6.77
第3次 9.17 2 080 0.85 1.53
9.18 2 170 0.89 1.67
9.19 2 360 1.04 2.27
9.20 2 340 1.15 2.34
9.21 2 300 0.94 1.90
表 1  1982年旧州站日均体积径流量、沙的质量浓度和日输沙质量通量
洪水过程 日期 qV/(m3·s?1) ρ/(kg·m?3) Q/(105 t)
第1次 6.29 2 700 2.12 4.95
6.30 3 010 2.12 5.52
7.1 3 220 1.91 5.32
7.2 3 170 2.37 6.49
7.3 3 050 2.22 6.39
第2次 7.23 3 600 2.97 9.24
7.24 4 230 3.04 11.15
7.25 4 390 3.41 12.96
7.26 4 000 3.49 12.1
7.27 3 270 3.21 9.07
第3次 9.18 2 540 1.24 2.72
9.19 2 670 1.45 3.31
9.20 2 770 1.36 3.26
9.21 2 750 1.39 3.34
9.22 2 720 1.3 3.05
表 2  1982年戛旧站日均体积径流量、沙的质量浓度和日输沙质量通量
图 3  无因次输沙质量通量导数与体积径流量关系
图 4  无因次输沙质量通量实测值与计算值对比
图 5  旧州站无因次输沙质量通量实测值与计算值对比
图 6  旧州站实测月输沙质量通量与BP神经网络预测值对比(2000年)
BP神经网络 R/% NMSE MRE
优化前 50.00 0.076 7 0.472 4
优化后 66.70 0.037 2 0.240 7
表 3  优化前后的BP神经网络误差对比
1 胡春宏, 王延贵, 张燕菁, 等 中国江河水沙变化趋势与主要影响因素[J]. 水科学进展, 2010, 21 (4): 524- 532
HU Chun-hong, WANG Yan-gui, ZHANG Yan-qing, et al Variation tendency of runoff and sediment load in China major rivers and its causes[J]. Advances in Water Science, 2010, 21 (4): 524- 532
2 刘成, 王兆印, 隋觉义 我国主要入海河流水沙变化分析[J]. 水利学报, 2007, (12): 1444- 1452
LIU Cheng, WANG Zhao-yin, SUI Jue-yi Analysis on variation of seagoing water and sediment load in main rivers of China[J]. Journal of Hydraulic Engineering, 2007, (12): 1444- 1452
doi: 10.3321/j.issn:0559-9350.2007.12.006
3 张信宝, 文安邦 长江上游干流和支流河流泥沙近期变化及其原因[J]. 水利学报, 2002, (4): 56- 59
ZHANG Xin-bao, WEN An-bang Variations of sediment in upper stream of Yangtze River and itstributary[J]. Journal of Hydraulic Engineering, 2002, (4): 56- 59
doi: 10.3321/j.issn:0559-9350.2002.04.011
4 DAI Z J, FAGHERAZZI S, MEI X F, et al Decline in suspended sediment concentration delivered by the Changjiang (Yangtze) River into the East China Sea between 1956 and 2013[J]. Geomorphology, 2016, (268): 123- 132
5 ZHAO G J, MU X M, SU B D, et al Analysis of stream flow and sediment flux changes in the Yangtze River basin[J]. Water International, 2012, 37 (5): 537- 551
doi: 10.1080/02508060.2012.681442
6 FAN H M, CAI Q G, GUO C J, et al Temporal and spatial dynamics of different particle size of suspended sediment in the Liu River catchments, China[J]. International Journal of Sediment Research, 2006, (3): 209- 219
7 马睿, 马良, 张罗号, 等 黄河流域典型沙质河段冲淤量预估方法及应用[J]. 水利学报, 2016, 47 (10): 1277- 1286
MA Rui, MA Liang, ZHANG Luo-hao, et al Prediction method for erosion and deposition on typical sandy bed sections of the Yellow River and its applications[J]. Journal of Hydraulic Engineering, 2016, 47 (10): 1277- 1286
8 FU K D, WANG C, SU B, et al Distribution and pollution assessment of heavy metals in sand sediment of reservoir along the middle and lower reaches of Lancang River[J]. Ecological Economy, 2016, 32 (12): 163- 168
9 刘成, 王建军, 何耘 澜沧江-湄公河输沙量变化及其影响因素[J]. 水利水电科技进展, 2013, 33 (1): 7- 12
LIU Cheng, WANG Jian-jun, HE Yun Change in sediment loads in the Lancang-Mekong River and its influencing factors[J]. Advances in Science and Technology of Water Resources, 2013, 33 (1): 7- 12
10 周安辉. 澜沧江近20年泥沙变化特性分析[J]. 人民长江, 2012, 43(增1): 114-115.
ZHOU An-hui. Analysis of sediment change characteristics of Lancang River in recent 20 years [J]. Yangtze River, 2012, 43(Suppl. 1): 114-115.
11 ZHONG H P, WANG J S Impacts from hydropower development of main stream on runoff of Lancangjiang River[J]. Water Resources and Hydropower Engineering, 2010, 41 (12): 72- 74
12 LI H C, WANG G Q, HAO Z C, et al Characteristics analysis of hydrometeorological elements in Lancang River basin[J]. Journal of Water Resources and Water Engineering, 2017, 28 (4): 21- 27
13 ZHAI H J, HU B, LUO X Y, et al Spatial and temporal changes in runoff and sediment loads of the Lancang River over the last 50 years[J]. Agricultural Water Management, 2016, (174): 74- 81
14 张瑞瑾, 谢鉴衡, 陈文彪. 河流动力学[M]. 武汉: 武汉大学出版社, 2007, 414.
15 WARNER J C, GEYER W R, LERCZAK J A Numerical modeling of an estuary: a comprehensive skill assessment[J]. Journal of Geophysical Research, 2005, 110: C05001
16 LI B, LI L J, LI H B, et al Changes in precipitation extremes in Lancang River Basin, 1965?2005[J]. Progress in Geography, 2011, 30 (3): 290- 298
17 RUMELHART D E, HITON G E, WILLIAMS R J. Parallel distributed processing: explorations in the microstructure of cognition [M]. Cambridge: MIT Press, 1986.
18 齐银峰, 谭荣建 基于改进粒子群优化算法的BP神经网络在大坝变形分析中的应用[J]. 水利水电技术, 2017, 48 (2): 118- 124
QI Yin-feng, TAN Rong-jian Application of improved particle swarm optimization algorithm-based BP neural network to dam deformation analysis[J]. Water Resources and Hydropower Engineering, 2017, 48 (2): 118- 124
19 赵文喜, 周滨, 刘红磊, 等 基于BP神经网络的海河干流叶绿素浓度短时预测研究[J]. 水利水电技术, 2017, 48 (11): 134- 140
ZHAO Wen-xi, ZHOU Bin, LIU Hong-lei, et al BP neural network-based short-term prediction of chlorophyll concentration in main stream of Haihe River[J]. Water Resources and Hydropower Engineering, 2017, 48 (11): 134- 140
[1] 胡鹏,邓芍怡,赵自雄,曹志先,刘怀汉,贺治国. 基于水沙床耦合的滩槽冲淤模拟与疏浚量计算[J]. 浙江大学学报(工学版), 2021, 55(4): 733-741.
[2] 孙志林,郑佳芸,祝丽丽,种琳,刘俊,罗居元. 沉水植物对水流结构与泥沙淤积的影响[J]. 浙江大学学报(工学版), 2021, 55(1): 71-80.
[3] 凌道盛,江琪熙,赵宇. 考虑基层裹挟的碎屑流铲刮效应数值模拟[J]. 浙江大学学报(工学版), 2020, 54(11): 2067-2075.
[4] 胡鹏,韩健健,雷云龙. 基于局部分级时间步长方法的水沙耦合数学模拟[J]. 浙江大学学报(工学版), 2019, 53(4): 743-752.
[5] 匡翠萍, 宋竑霖, 顾杰, 马震. 黄骅港风生流及紊动的三维特性[J]. 浙江大学学报(工学版), 2017, 51(1): 38-45.
[6] 郭聪,孙志林,郑浩磊,潘桂娥. 河口冲淤对围垦的响应[J]. 浙江大学学报(工学版), 2016, 50(9): 1791-1797.
[7] 张晓雷, 夏军强, 邓珊珊, 王增辉. 断面间距对黄河下游高含沙洪水模拟结果影响[J]. 浙江大学学报(工学版), 2016, 50(4): 735-743.
[8] 张文君,孙红月,潘攀,魏振磊. 泥石流虹吸排水分流池自清淤能力分析[J]. 浙江大学学报(工学版), 2015, 49(11): 2159-2164.
[9] 孙志林, 倪晓静, 许丹, 聂会. 河口泥沙数学模型的若干问题[J]. 浙江大学学报(工学版), 2015, 49(2): 232-237.
[10] 夏军强, 宗全利, 邓珊珊, 许全喜, 张翼. 三峡工程运用后荆江河段平滩河槽形态调整特点[J]. 浙江大学学报(工学版), 2015, 49(2): 238-245.
[11] 范念念, 吴保生. 基于随机-动力学模型的非均匀推移质扩散[J]. 浙江大学学报(工学版), 2015, 49(2): 246-250.
[12] 胡德超, 池龙哲, 杨琼, 王敏. 水库坝区冲刷漏斗的形成机理[J]. 浙江大学学报(工学版), 2015, 49(2): 257-264.
[13] 孙志林, 杨仲韬, 高运, 许丹, 胡世祥. 长江分汊河口水力几何形态[J]. 浙江大学学报(工学版), 2014, 48(12): 2266-2270.
[14] 周建银, 邵学军, 江磊, 假冬冬. 水库细颗粒淤积物的重力驱动流动[J]. 浙江大学学报(工学版), 2014, 48(12): 2254-2258.
[15] 陈一帆, 程伟平, 蒋建群. 一种稳健的河流糙率反演方法[J]. J4, 2013, 47(8): 1361-1365.