Please wait a minute...
浙江大学学报(工学版)  2018, Vol. 52 Issue (11): 2043-2049    DOI: 10.3785/j.issn.1008-973X.2018.11.001
土木与水利工程     
新型空心球结构的压缩力学性能
戴美玲1,2, 杨福俊1, 何小元1, 代祥俊3
1. 东南大学 土木工程学院, 江苏 南京 210096;
2. 广东工业大学 土木与交通工程学院, 广州 510006;
3. 山东理工大学 交通与车辆工程学院, 山东 淄博 255049
Compressive mechanical properties of new type of hollow sphere structure
DAI Mei-ling1,2, YANG Fu-jun1, HE Xiao-yuan1, DAI Xiang-jun3
1. School of Civil Engineering, Southeast University, Nanjing 210096, China;
2. School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou 510006, China;
3. School of Transportation and Vehicle Engineering, Shandong University of Technology, Zibo 255049, China
 全文: PDF(2328 KB)   HTML
摘要:

提出新型空心球结构,该结构是将球体上穿孔的空心球按照体心立方体进行排列和连接.通过实验研究了3D打印的单胞和胞元组合结构的压缩力学性能,建立单胞结构的三维有限元数值模型,实验结果验证了有限元模型的有效性.通过数值模拟研究穿孔空心球壁厚和孔径对结构弹性模量以及初始屈服应力的影响.结果表明,单胞结构的变形行为包括弹性变形、坍塌变形以及结构的自接触行为;多胞组合结构的变形过程包括弹性阶段、大变形阶段以及致密化阶段,其中大变形是由结构的层层连续坍塌变形所导致的;结构的弹性模量和初始屈服应力随壁厚的增大而增大,随孔径的增大而减小;与壁厚变化相比,结构的力学性能对孔径变化更为敏感.

Abstract:

A new hollow sphere structure was proposed. Hollow spheres perforated with several holes were bonded in a body-centered cubic (BCC) pattern in this new structure. The compressive mechanical properties of unit and multi-unit BCC packing perforated hollow sphere structures (PHSS) fabricated through three-dimension (3D) printing technology were investigated by experiments, and the unit structure corresponding to the experiment was modelled by using the 3D finite element method (FEM). The validity of the FE model was confirmed by experimental results. The effect of wall thickness and hole diameter of perforated hollow sphere on elastic modulus and initial yield stress of the structure was evaluated by FEM. The results showed that the compression deformation behaviors of the unit structure included elastic deformation, collapse deformation and structural self-contact behavior; the multi-unit structure experienced elastic, large deformation and densification stages, among which the large deformation behavior was caused by the layer by layer collapsing in the structure; the Young's modulus and initial yield stress both increased with the sphere wall thickness and decreased with the sphere hole diameter; the mechanical properties were more sensitive to the change of hole diameter than wall thickness.

收稿日期: 2018-01-11 出版日期: 2018-11-22
CLC:  O347  
基金资助:

国家自然科学基金资助项目(11602056,11772092,11532005,11672167);江苏省自然科学基金资助项目(BK20160663)

作者简介: 戴美玲(1986-),女,博士后,从事实验固体力学、多孔材料的力学性能及优化设计研究.orcid.org/0000-0002-6553-6151.E-mail:meiling-dai@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  

引用本文:

戴美玲, 杨福俊, 何小元, 代祥俊. 新型空心球结构的压缩力学性能[J]. 浙江大学学报(工学版), 2018, 52(11): 2043-2049.

DAI Mei-ling, YANG Fu-jun, HE Xiao-yuan, DAI Xiang-jun. Compressive mechanical properties of new type of hollow sphere structure. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2018, 52(11): 2043-2049.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2018.11.001        http://www.zjujournals.com/eng/CN/Y2018/V52/I11/2043

[1] 刘培生, 陈国锋. 多孔固体材料[M]. 北京:化学工业出版社, 2013:1-11.
[2] HOU W, YANG X, ZHANG W, et al. Design of energy-dissipating structure with functionally graded auxetic cellular material[J]. International Journal of Crashworthiness, 2018, 23(4):1-11.
[3] 杨姝, 刘国平, 亓昌, 等. 金属空心球梯度泡沫结构抗冲击特性仿真与优化[J]. 浙江大学学报:工学版, 2016, 50(8):1593-1599 YANG Shu, LIU Guo-ping, QI Chang, et al. Simulation and optimization for anti-shock performances of graded metal hollow sphere foam structure[J]. Journal of Zhejiang University:Engineering Science, 2016, 50(8):1593-1599
[4] BOROVINŠEK M, VESENJAK M, REN Z. Estimating the base material properties of sintered metallic hollow spheres by inverse engineering procedure[J]. Mechanics of Materials, 2016, 100:22-30.
[5] ÖCHSNER A, AUGUSTIN C. Multifunctional metallic hollow sphere structures[M]. Berlin Heidelberg:Springer, 2009:1-3.
[6] 余为. 金属空心球材料组元力学性能及结构设计[D]. 秦皇岛:燕山大学, 2011:14-17. YU Wei. Mechanical properties of metallic hollow sphere material component and structural design[D]. Qinhuangdao:Yanshan University, 2011:14-17.
[7] 李智伟, 魏尊杰, 王宏伟. 空心球金属泡沫的研究进展[J]. 机械工程材料, 2008, 32(11):1-4 LI Zhi-wei, WEI Zun-jie, WANG Hong-wei. Research progress of holloe sphere metallic foams[J]. Materials for Mechanical Engineering, 2008, 32(11):1-4
[8] SANDERS W S, GIBSON L J. Mechanics of hollow sphere foams[J]. Materials Science and Engineering A, 2003, 347(1/2):70-85.
[9] SANDERS W S, GIBSON L J. Mechanics of BCC and FCC hollow-sphere foams[J]. Materials Science and Engineering A, 2003, 352(1/2):150-161.
[10] GASSER S, PAUN F, CAYZEELE A, et al. Uniaxial tensile elastic properties of a regular stacking of brazed hollow spheres[J]. Scripta Materialia, 2003, 48(12):1617-1623.
[11] GASSER S, PAUN F, RIFFARD L, et al. Microplastic yield condition for a periodic stacking of hollow spheres[J]. Scripta Materialia, 2004, 50(4):401-405.
[12] GASSER S, PAUN F, BRÉCHET Y. Finite elements computation for the elastic properties of a regular stacking of hollow spheres[J]. Materials Science and Engineering A, 2004, 379(1/2):240-244.
[13] FIEDLER T, STURM B, ÖCHSNER A, et al. Modelling the mechanical behaviour of adhesively bonded and sintered hollow-sphere structures[J]. Mechanics of Composite Materials, 2006, 42(6):559-570.
[14] FIEDLER T, ÖCHSNER A. On the anisotropy of adhesively bonded metallic hollow sphere structures[J]. Scripta Materialia, 2008, 58(8):695-698.
[15] OLIVEIRA B F, CUNDA L A B D, ÖCHSNER A, et al. Hollow sphere structures:a study of mechanical behaviour using numerical simulation[J]. Materialwissenschaft Und Werkstofftechnik, 2010, 40(3):144-153.
[16] AMANI Y, ÖCHSNER A. Finite element simulation of arrays of hollow sphere structures[J]. Materialwissenschaft Und Werkstofftechnik, 2015, 46(4/5):462-476.
[17] HOSSEINI S M H, MERKEL M, AUGUSTIN C, et al. Numerical prediction of the effective thermal conductivity of perforated hollow sphere structures[J]. Defect and Diffusion Forum, 2008, 283-286:6-12.
[18] HOSSEINI S M H, MERKEL M, ÖCHSNER A. Finite element simulation of the thermal conductivity of perforated hollow sphere structures (PHSS):parametric study[J]. Materials Letters, 2009, 63(13/14):1135-1137.
[19] ANDREAS, OCHSNER, SEYED, et al. Numerical simulation of the mechanical properties of sintered and bonded perforated hollow sphere structures (PHSS)[J]. Journal of Materials Science and Technology, 2010, 26(8):730-736.
[20] ÖCHSNER A. Numerical simulation of perforated hollow sphere structures (PHSS) to investigate mechanical properties[J]. Materials Science Forum, 2009, 620-622:275-278.
[21] SULONG M A, ÖCHSNER A. Prediction of the elastic properties of syntactic perforated hollow sphere structures[J]. Computational Materials Science, 2012, 53(1):60-66.
[22] 吴承伟, 张鹏程, 周平. 薄壁球壳超轻质结构力学行为研究[J]. 大连理工大学学报, 2008, 48(5):625-630 WU Cheng-wei, ZHANG Peng-cheng, ZHOU Ping. Research on mechanical behavior of super-lightweight structure made of thin-walled spheres[J]. Journal of Dalian University of Technology, 2008, 48(5):625-630
[23] GAO Z Y, YU T X, KARAGIOZOVA D. Finite element simulations on the mechanical properties of MHS materials[J]. Acta Mechanica Sinica, 2007, 23(1):65-75.

No related articles found!