[1] PARK C M, IH J G, NAKAYAMA Y, et al. Inverse estimation of the acoustic impedance of a porous woven hose from measured transmission coefficients[J]. Journal of the Acoustical Society of America, 2003, 113(1):128-138.
[2] 钱欣怡. 进气系统声学性能的实验研究及其优化[D]. 杭州:浙江大学, 2013:16-17. QIAN Xin-yi. Experimental study of acoustics performance of the intake system and its optimization[D]. Hangzhou:Zhejiang University, 2013:16-17.
[3] CUMMINGS A, KIRBY R. Low-frequency sound transmission in ducts with permeable walls[J]. Journal of Sound and Vibration, 1999, 226(2):237.
[4] KITAHARA S, TAKAO H, HASHIMOTO T, et al. Improvement of car interior noise by utilizing a porous intake duct:treatment effect on an intake system[J]. Medical Physics, 2005, 32(4):1083-1093.
[5] ARNAULT N, BAUDET A, BECKER N. New low packaging acoustic solution for air intake line[J]. SAE Technical Paper, 2015-01-1665.
[6] PARK C M, IH J G, NAKAYAMA Y, et al. Measurement of acoustic impedance and prediction of transmission loss of the porous woven hose in engine intake systems[J]. Applied Acoustics, 2002, 63(7):775-794.
[7] DOKUMACI E. Sound transmission in pipes with porous walls[J]. Journal of Sound and Vibration, 2010, 329(25):5346-5355.
[8] 方丹群. 空气动力性噪声与消声器[M]. 北京:科学出版社, 1978:110-121.
[9] 贾维新. 发动机结构噪声和进气噪声的数字化仿真及优化设计研究[D]. 杭州:浙江大学, 2008:131-150. JIA Wei-xin. Research on numerical simulation of structural noise/intake noise and optimization design[D]. Hangzhou:Zhejiang University, 2008:131-150.
[10] 刘联鋆, 郝志勇, 钱欣怡. 空滤器滤芯声学特性的仿真方法[J]. 浙江大学学报:工学版, 2012, 46(10):1784-1789 LIU Lian-yun, HAO Zhi-yong, QIAN Xin-yi. Simulation methods for acoustical characteristics of air-cleaner filter element[J]. Journal of Zhejiang University:Engineering Science, 2012, 46(10):1784-1789
[11] LIU C, HAO Z Y, CHEN X R. Optimal design of acoustic performance for automotive air-cleaner[J]. Applied Acoustics, 2010, 71(5):431-438.
[12] ALLARD J, CHAMPOUX Y. New empirical equations for sound propagation in rigid frame fibrous materials[J]. Journal of the Acoustical Society of America, 1992, 91(6):3346-3353.
[13] 周慧. 发动机涡轮增压进气系统高频噪声研究与消声设计[D]. 杭州:浙江大学, 2014:23-24. ZHOU Hui. Study on high-frequency noise of engine turbocharger intake system and silencers design[D]. Hangzhou:Zhejiang University, 2014:23-24.
[14] 朱建. 多孔金属材料声学参数表征与确定方法研究[D]. 银川:宁夏大学, 2013:21-24. ZHU Jian. Study on the characteristics and determination of the acoustical parameters in porous metal materials[D]. Yinchuan:Ningxia University, 2013:21-24.
[15] 张宏宇, 包钢, 董鑫, 等. 吸声材料参数对阻性消声器传递损失影响的数值研究[J]. 科学技术与工程, 2015, 15(10):52-56 ZHANG Hong-yu, BAO Gang, DONG Xin, et al. Numerical study on the influence of sound absorption material parameters on transmission loss of dissipative silencer[J]. Science Technology and Engineering, 2015, 15(10):52-56
[16] 庞剑, 谌刚, 何华. 汽车噪声与振动:理论与应用[M]. 北京:北京理工大学出版社, 2006:198-203.
[17] 李献伟, 程耀东, 潘家强. 金属纤维材料的吸声特性[J]. 浙江大学学报:工学版, 1992(增1):31-38 LI Xian-wei, CHENG Yao-dong, PAN Jia-qiang. The sound absorbing characteristics of metal fibrous materials[J]. Journal of Zhejiang University:Engineering Science, 1992(Suppl.1):31-38
[18] 梁翠芳, 陈霞, 傅婷, 等. 基于图像处理的网格圈织物孔隙率检测[J]. 纺织学报, 2014, 35(5):49-54 LIANG Cui-fang, CHEN Xia, FU Ting, et al. Inspection method of lattice apron porosity based on image processing[J]. Journal of Textile Research, 2014, 35(5):49-54
[19] TAO Z, SEYBERT A F. A review of current techniques for measuring muffler transmission loss[J]. SAE International, 2003-01-1653.
[20] ASTM E1050-12, Standard test method for impedance and absorption of acoustical materials using a tube, two microphones and a digital frequency analysis system[S]. West Conshohocken:ASTM, 2012. |