Please wait a minute...
浙江大学学报(工学版)  2018, Vol. 52 Issue (10): 1894-1900    DOI: 10.3785/j.issn.1008-973X.2018.10.008
机械与能源工程     
进气系统编织管声学性能
瞿熠卿, 郝志勇, 李恒, 郑旭, 周南
浙江大学 能源工程学院, 浙江 杭州 310027
Acoustic performance of fabric pipe in intake system
QU Yi-qing, HAO Zhi-yong, LI Heng, ZHENG Xu, ZHOU Nan
College of Energy Engineering, Zhejiang University, Hangzhou 310027, China
 全文: PDF(1216 KB)   HTML
摘要:

通过建立编织管声学有限元模型,采用Johnson-Champoux-Allard模型描述编织管管壁特性,研究进气系统编织管的声学性能仿真方法.研究Johnson-Champoux-Allard模型中的5个特性参数对编织管声学性能的影响.流阻率的影响最显著,主要表现在低频范围;孔隙率、形状因子、黏性特征长度的影响主要表现在高频范围;热特征长度的影响较小.采用两负载法测量编织管的传递损失,结合仿真研究提取编织管管壁的5个特性参数,通过台架试验测量发动机实际工作状态下安装编织管的进气口噪声.结果表明,编织管在宽频范围内的降噪作用良好,能够有效地衰减高频气流噪声成分.

Abstract:

The wall of the pipe was described with Johnson-Champoux-Allard model by establishing the acoustic finite element model of the fabric pipe. The acoustic simulation method of the fabric pipe in intake system was analyzed. The influence on the acoustic performance brought by the five parameters of Johnson-Champous-Allard model was analyzed. Results show that the flow resistivity has the greatest influence, especially in the low frequency range. The influence of the porosity, the tortuosity and the viscous characteristic length works mainly in the high frequency range. The thermal characteristic length has little effect. The transmission loss of the fabric pipe was measured by experiments based on two-load method. The five parameters were obtained by the simulation and test. The intake noise with the fabric pipe was measured in the bench test. The fabric pipe performs well in attenuating noise in a wide band of frequency, and the airflow induced noise can be effectively attenuated.

收稿日期: 2017-06-07 出版日期: 2018-10-11
CLC:  TK402  
基金资助:

国家自然科学基金资助项目(51705454)

通讯作者: 郑旭,男,讲师.orcid.org/0000-0001-9000-6593.     E-mail: zhengxu@zju.edu.cn
作者简介: 瞿熠卿(1993-),女,硕士生,从事发动机进排气系统NVH的研究.orcid.org/0000-0001-7512-9579.E-mail:quyiqing@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  

引用本文:

瞿熠卿, 郝志勇, 李恒, 郑旭, 周南. 进气系统编织管声学性能[J]. 浙江大学学报(工学版), 2018, 52(10): 1894-1900.

QU Yi-qing, HAO Zhi-yong, LI Heng, ZHENG Xu, ZHOU Nan. Acoustic performance of fabric pipe in intake system. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2018, 52(10): 1894-1900.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2018.10.008        http://www.zjujournals.com/eng/CN/Y2018/V52/I10/1894

[1] PARK C M, IH J G, NAKAYAMA Y, et al. Inverse estimation of the acoustic impedance of a porous woven hose from measured transmission coefficients[J]. Journal of the Acoustical Society of America, 2003, 113(1):128-138.
[2] 钱欣怡. 进气系统声学性能的实验研究及其优化[D]. 杭州:浙江大学, 2013:16-17. QIAN Xin-yi. Experimental study of acoustics performance of the intake system and its optimization[D]. Hangzhou:Zhejiang University, 2013:16-17.
[3] CUMMINGS A, KIRBY R. Low-frequency sound transmission in ducts with permeable walls[J]. Journal of Sound and Vibration, 1999, 226(2):237.
[4] KITAHARA S, TAKAO H, HASHIMOTO T, et al. Improvement of car interior noise by utilizing a porous intake duct:treatment effect on an intake system[J]. Medical Physics, 2005, 32(4):1083-1093.
[5] ARNAULT N, BAUDET A, BECKER N. New low packaging acoustic solution for air intake line[J]. SAE Technical Paper, 2015-01-1665.
[6] PARK C M, IH J G, NAKAYAMA Y, et al. Measurement of acoustic impedance and prediction of transmission loss of the porous woven hose in engine intake systems[J]. Applied Acoustics, 2002, 63(7):775-794.
[7] DOKUMACI E. Sound transmission in pipes with porous walls[J]. Journal of Sound and Vibration, 2010, 329(25):5346-5355.
[8] 方丹群. 空气动力性噪声与消声器[M]. 北京:科学出版社, 1978:110-121.
[9] 贾维新. 发动机结构噪声和进气噪声的数字化仿真及优化设计研究[D]. 杭州:浙江大学, 2008:131-150. JIA Wei-xin. Research on numerical simulation of structural noise/intake noise and optimization design[D]. Hangzhou:Zhejiang University, 2008:131-150.
[10] 刘联鋆, 郝志勇, 钱欣怡. 空滤器滤芯声学特性的仿真方法[J]. 浙江大学学报:工学版, 2012, 46(10):1784-1789 LIU Lian-yun, HAO Zhi-yong, QIAN Xin-yi. Simulation methods for acoustical characteristics of air-cleaner filter element[J]. Journal of Zhejiang University:Engineering Science, 2012, 46(10):1784-1789
[11] LIU C, HAO Z Y, CHEN X R. Optimal design of acoustic performance for automotive air-cleaner[J]. Applied Acoustics, 2010, 71(5):431-438.
[12] ALLARD J, CHAMPOUX Y. New empirical equations for sound propagation in rigid frame fibrous materials[J]. Journal of the Acoustical Society of America, 1992, 91(6):3346-3353.
[13] 周慧. 发动机涡轮增压进气系统高频噪声研究与消声设计[D]. 杭州:浙江大学, 2014:23-24. ZHOU Hui. Study on high-frequency noise of engine turbocharger intake system and silencers design[D]. Hangzhou:Zhejiang University, 2014:23-24.
[14] 朱建. 多孔金属材料声学参数表征与确定方法研究[D]. 银川:宁夏大学, 2013:21-24. ZHU Jian. Study on the characteristics and determination of the acoustical parameters in porous metal materials[D]. Yinchuan:Ningxia University, 2013:21-24.
[15] 张宏宇, 包钢, 董鑫, 等. 吸声材料参数对阻性消声器传递损失影响的数值研究[J]. 科学技术与工程, 2015, 15(10):52-56 ZHANG Hong-yu, BAO Gang, DONG Xin, et al. Numerical study on the influence of sound absorption material parameters on transmission loss of dissipative silencer[J]. Science Technology and Engineering, 2015, 15(10):52-56
[16] 庞剑, 谌刚, 何华. 汽车噪声与振动:理论与应用[M]. 北京:北京理工大学出版社, 2006:198-203.
[17] 李献伟, 程耀东, 潘家强. 金属纤维材料的吸声特性[J]. 浙江大学学报:工学版, 1992(增1):31-38 LI Xian-wei, CHENG Yao-dong, PAN Jia-qiang. The sound absorbing characteristics of metal fibrous materials[J]. Journal of Zhejiang University:Engineering Science, 1992(Suppl.1):31-38
[18] 梁翠芳, 陈霞, 傅婷, 等. 基于图像处理的网格圈织物孔隙率检测[J]. 纺织学报, 2014, 35(5):49-54 LIANG Cui-fang, CHEN Xia, FU Ting, et al. Inspection method of lattice apron porosity based on image processing[J]. Journal of Textile Research, 2014, 35(5):49-54
[19] TAO Z, SEYBERT A F. A review of current techniques for measuring muffler transmission loss[J]. SAE International, 2003-01-1653.
[20] ASTM E1050-12, Standard test method for impedance and absorption of acoustical materials using a tube, two microphones and a digital frequency analysis system[S]. West Conshohocken:ASTM, 2012.

No related articles found!