Please wait a minute...
浙江大学学报(工学版)  2018, Vol. 52 Issue (10): 1888-1893    DOI: 10.3785/j.issn.1008-973X.2018.10.007
机械与能源工程     
中高开孔率多孔板高温环境下阻力特性试验研究
周昊, 赵梦豪, 张昆, 李宁, 马炜晨
浙江大学 能源清洁利用国家重点实验室, 浙江 杭州 310027
Experimental study on resistance characteristics of perforated plates with medium and high porosity in high temperature condition
ZHOU Hao, ZHAO Meng-hao, ZHANG Kun, LI Ning, MA Wei-chen
State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China
 全文: PDF(969 KB)   HTML
摘要:

为了研究实际工作环境下中高开孔率多孔板的阻力特性,针对0.3≤开孔率≤0.68、0.21≤相对厚度≤0.5的多孔板,采用与实际烟温相似的空气介质进行阻力特性研究.通过试验发现,多孔板压降随着雷诺数的增大而增大,当雷诺数增大时,不同开孔率多孔板的压降差距逐渐增大;气体温度和雷诺数对多孔板阻力系数几乎无影响.多孔板开孔率与相对厚度对阻力系数的影响较大,阻力系数均随着开孔率和相对厚度的增大而降低.

Abstract:

Several perforated plates with porosity range of 0.3 to 0.68 and relative thickness range of 0.21 to 0.5 were tested with a gas-solid flow medium in similar smoke temperature in order to obtain the influence of geometric parameters and flow state of perforated plates with medium and high porosity on the resistance coefficient. The experimental results show that the perforated-plate pressure drop increases as Reynolds number increases, and the gap of different perforated-plate pressure drop increases when increasing Reynolds number. Gas temperature and Reynolds numbers have almost no influence on the resistance coefficient. The porosity and relative thickness of perforated plate have a great influence on the resistance coefficient, and resistance coefficient decreases as porosity and relative thickness increase.

收稿日期: 2017-08-17 出版日期: 2018-10-11
CLC:  TK284  
基金资助:

国家“973”重点基础研究发展规划资助项目(2015CB251501)

作者简介: 周昊(1973-),男,教授,博导,从事煤的低污染优化燃烧技术研究.orcid.org/0000-0001-9779-7703.E-mail:zhouhao@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  

引用本文:

周昊, 赵梦豪, 张昆, 李宁, 马炜晨. 中高开孔率多孔板高温环境下阻力特性试验研究[J]. 浙江大学学报(工学版), 2018, 52(10): 1888-1893.

ZHOU Hao, ZHAO Meng-hao, ZHANG Kun, LI Ning, MA Wei-chen. Experimental study on resistance characteristics of perforated plates with medium and high porosity in high temperature condition. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2018, 52(10): 1888-1893.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2018.10.007        http://www.zjujournals.com/eng/CN/Y2018/V52/I10/1888

[1] VIJAPUR S H. Design optimization and experimental study of a wet laminar electrostatic precipitator for enhancing collection efficiency of aerosols[D]. Ohio:Ohio University, 2008.
[2] 熊贵龙, 李水清, 陈晟, 等. 增强PM2.5脱除的新型电除尘技术的发展[J]. 中国电机工程学报, 2015, 35(9):2217-2223 XIONG Gui-long, LI Shui-qing, CHEN Sheng, et al. Development of advanced electrostatic precipitation technologies for reducing PM2.5 emissions from coal-fired power plants[J]. Proceedings of the CSEE, 2015, 35(9):2217-2223
[3] CHAKINALA A G, GOGATE P R, BURGESS A E, et al. Treatment of industrial wastewater effluents using hydrodynamic cavitation and the advanced Fenton process[J]. Ultrasonicssonochemistry, 2008, 15(1):49-54.
[4] 赵天怡, 张吉礼. 多孔孔板节流特性主效应因素试验[J]. 哈尔滨工业大学学报, 2007, 39(12):1878-1881 ZHAO Tian-yi, ZHANG Ji-li. Experimental study on main factor affecting throttling characteristic for multi-hole orifice[J]. Journal of Harbin Institute of Technology, 2007, 39(12):1878-1881
[5] 田红, 高旭, 汤珂, 等. 结构参数对多孔板低温流量计性能影响分析[J]. 低温工程, 2015(06):43-48 TIAN Hong, GAO Xu, TANG Ke, et al. Influence of geometric parameters on performance of a cryogenic fluid flow meter with perforated plate[J]. Cryogenics, 2015(06):43-48
[6] CHOI M K, LIM Y B, LEE H W, et al. Flow uniformizing distribution panel design based on a non-uniform porosity distribution[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2014, 130(130):41-47.
[7] GAN G, RIFFAT S B. Pressure loss characteristics of orifice and perforated plates[J]. Experimental Thermal and Fluid Science, 1997, 14(2):160-165.
[8] WEBER L J, CHERIAN M P, ALLEN M E, et al. Headloss characteristics for perforated plates and flat bar screens[R]. Iowa City, IA:Iowa Institute of Hydraulic Engineering, 2000.
[9] GUO B Y, HOU Q F, YU A B, et al. Numerical modelling of the gas flow through perforated plates[J]. Chemical Engineering Research and Design, 2013, 91(3):403-408.
[10] 张颉, 张泽, 胡永锋. 高浓度电除尘器入口封头气固两相流动的近流线数值模拟[J]. 化工学报, 2004, 55(9):1448-1454 ZHANG Jie, ZHANG Ze, HU Yong-feng. Close-to-streamline numerical simulation of gas-solid flow in high concentration ESP gas inlet hood[J]. Journal of Chemical Industry and Engineering, 2004, 55(9):1448-1454
[11] BAYAZIT Y, SPARROW E M, JOSEPH D D. Perforated plates for fluid management:plate geometry effects and flow regimes[J]. International Journal of Thermal Sciences, 2014, 85(85):104-111.
[12] MALAVASI S, MACCHI S, MEREGHETTI E. Cavitation and dissipation efficiency of multihole orifices[Z]. Institute of Thermomechanics Academy of Sciences of the Czech Republic, Prague, 2008:581-586.
[13] MALAVASI S, MESSA G V, MACCHI S. The pressure loss coefficient through sharp-edged perforated plates[Z]. Attidel XXXⅡ Convegno Nazionale di Idraulica e Costruzioni Idrauliche, Dipt. of ⅡAA University of Palermo, 2010:193.
[14] MALAVASI S, MESSA G, FRATINO U, et al. On the pressure losses through perforated plates[J]. Flow measurement and Instrumentation, 2012(28):57-66.
[15] ZHAO T, ZHANG J, MA L. A general structural design methodology for multi-hole orifices and its experimental application[J]. Journal of Mechanical Science and Technology, 2011, 25(9):2237-2246.
[16] 周昊, 赵锴, 郭无双, 等. 中高开孔率电除尘器多孔板的阻力特性试验研究[J]. 中国电机工程学报, 2016, 37(9):2629-2637 ZHOU Hao, ZHAO Kai, GUO Wu-shuang, et al. Research on resistance characteristics of electrostatic precipitator's perforated plates with medium and high porosity[J]. Proceedings of the CSEE, 2016, 37(9):2629-2637
[17] MILLER D S. Internal flow system[M]. Cranfield:BHRA, 1990:366-369.

[1] 寿春晖, 祁志福, 李敏, 邹正伟, 刘春红, 李晓东. 超低排放燃煤机组SO2减排的环境影响[J]. 浙江大学学报(工学版), 2017, 51(10): 1967-1973.