自动化技术 |
|
|
|
|
结合背景差分与光流法的人群状态突变检测 |
高鹏辉, 赵武峰, 沈继忠 |
浙江大学 信息与电子工程学院, 浙江 杭州 310027 |
|
Detection of crowd state mutation based onbackground difference algorithm and optical flow algorithm |
GAO Peng-hui, ZHAO Wu-feng, SHEN Ji-zhong |
College of Information Science and Electronic Engineering, Zhejiang University, Hangzhou 310027, China |
[1] 丁荣.网络视频监控系统的构建[D].上海:上海交通大学,2007. DING Rong. Construction of internet video monitoring system[D]. Shanghai:Shanghai Jiao Tong University, 2007.
[2] 饶彦.幼儿园智能视频监控系统探究[J].计算机光盘软件与应用,2013(13):217-218. RAO Yan. Research on intelligent video surveillance system in kindergarten[J]. Computer CD Software and Applications, 2013(13):217-218.
[3] 孙静.校园网视频监控安全系统[D].天津:天津大学, 2012. SUN Jing. Campus network video surveillance security system[D]. Tianjin:Tianjin University, 2012.
[4] CUI W, CHEN Y, SUN C, et al. Design and imple-mentation of embedded video monitoring system based on Tiny210[C]//IEEE 11th World Congress on Intelligent Control and Automation. Shenyang:IEEE, 2014:4651-4656.
[5] BABAGUCHI N, CAVALLARO A, CHELLAPPA R, et al. Guest editorial:special issue on intelligent video surveillance for public security and personal privacy[J]. IEEE Transactions on Information Forensics and Security, 2013, 8(10):1559-1561.
[6] WANG Z, OUYANG N, HAN C. Unusual event detection without tracking[C]//2009 International Conference on Computational Intelligence and Software Engineering, Wuhan:IEEE, 2009:1-3.
[7] WU X. Design of person flow counting and monitoring system based on feature point extraction of optical flow[C]//IEEE 5th International Conference on Intelligent Systems Design and Engineering Applications. Hunan:IEEE, 2014:376-380.
[8] 何传阳,王平,张晓华,等.基于智能监控的中小人群异常行为检测[J].计算机应用,2016,36(6):1724-1729. HE Chuan-yang, WANG Ping, ZHANG Xiao-hua, et al. Abnormal behavior detection of small and medium crowd based on intelligent video surveillance[J]. Journal of Computer Applications, 2016, 36(6):1724-1729.
[9] 曹艺华.面向视频监控的大尺度人群行为分析[D].上海:上海交通大学,2013. CAO Yi-hua. The large-scale crowd analysis in video surveillance[D]. Shanghai:Shanghai Jiao Tong Uni-versity, 2013.
[10] 林沁.视频中的大规模人群密度与异常行为分析[D].厦门:厦门大学,2014. LIN Qin. Crowd density and abnormal behavior analy-sis of video[D]. Xiamen:Xiamen University, 2014.
[11] 王乔.运动人体的异常行为检测研究[D].成都:电子科技大学,2012. WANG Qiao. Study on abnormal behavior detection of moving people[D]. Chengdu:University of Electronic Science and Technology of China, 2012.
[12] WANG J, XU Z. Spatio-temporal texture modelling for real-time crowd anomaly detection[J]. Computer Vision and Image Understanding, 2016, 144(C):177-187.
[13] KALTSA V, BRIASSOULI A, KOMPATSIARIS I, et al. Swarm intelligence for detecting interesting events in crowded environments[J]. IEEE Transactions on Image Processing, 2015, 24(7):2153-2166.
[14] 彭怀亮.视频监控场景中人群异常行为识别研究[D].杭州:中国计量学院,2014. PENG Huai-liang. Research on crowd abnormal behaviors recognition in video surveillance scene[D]. Hangzhou:China Jiliang University, 2014.
[15] 柴斌.突发人群聚集事件智能视频监控[D].成都:电子科技大学,2010. CHAI Bin. Intelligent video surveillance of Burst crowd gathering event[D]. Chengdu:University of Electronic Science and Technology of China, 2010.
[16] MARSDEN M, MCGUINNESS K, LITTLE S, et al. Holistic features for real-time crowd behaviour anomaly detection[C]//IEEE International Conference on Image Processing. Phoenix:IEEE, 2016:918-922.
[17] 杨世淼.基于Web Server和Android平台的智能幼儿园管理系统[D].杭州:浙江大学,2016. YANG Shi-miao. Intelligent management system for kindergarten based on the web server and android[D]. Hangzhou:Zhejiang University, 2016.
[18] ROJAS O E, TOZZI C L. Abnormal crowd behavior detection based on Gaussian mixture model[C]//Computer Vision-ECCV 2016 Workshops. Amsterdam:[s.n.], 2016:668-675.
[19] 杜晶晶.智能视频监控中运动目标检测与跟踪算法研究[D].成都:西南交通大学,2009. DU Jing-jing. Research on detection and tracking of moving object in intelligent video surveillance system[D]. Chengdu:Southwest Jiaotong University,2009.
[20] LAGANIERE R.OpenCV 2计算机视觉编程手册[M].张静,译. 北京:科学出版社,2013:46-71.
[21] BRAGA-NETO U, GOUTSIAS J. Object-based image analysis using multiscale connectivity[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005, 27(6):892-907.
[22] HERRERO E, ORRITE C, SENAR J. Detected motion classifycation with a double background and a neighborhood based difference[J]. Pattern Recognition Letters, 2003, 24(12):2079-2092.
[23] CUCCHIARA R, PICCARDI M, PRATI A. Detecting moving objects, ghosts, and shadows in video streams[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2003, 25(10):1337-1342.
[24] 王永忠,梁彦,潘泉,等.基于自适应混合高斯模型的时空背景建模[J].自动化学报, 2009, 35(4):371-378. WANG Yong-zhong, LIANG Yan, PAN Quan, et al. Spatio temporal background modeling based on adaptive mixture of Gaussians[J]. Acta Automatica Sinica, 2009, 35(4):371-378.
[25] COLLINS R T, LIPTON A J, KANADE T, et al. A system for video surveillance and monitoring[C]//International Conference on Automated Deduction. Pittsburgh:[s. n.], 2000:497-501.
[26] SONKA M, HLAVAC V, BOYLE R.图象处理分析与机器视觉[M]. 艾海舟,武勃,等,译. 2版.北京:人民邮电出版社,2003:469-491.
[27] BEAUCHEMIN S S, BARRON J L. The computation of optical flow[J]. ACM Computing Surveys (CSUR), 1995, 27(3):433-466.
[28] VIDAL R, RAVICHANDRAN A. Optical flow estimation and segmentation of multiple moving dynamic textures[C]//IEEE Computer Society Conference on Computer Vision and Pattern Recognition.San Diego:IEEE, 2005:516-521.
[29] MOCHIZUKI Y, KAMEDA Y, IMIYA A, et al. Variational method for super-resolution optical flow[J]. Signal Processing, 2011, 91(7):1535-1567.
[30] SáNCHEZ A, RUIZ J V, MORENO A S, et al. Differential optical flow applied to automatic facial expression recognition[J]. Neurocomputing, 2011, 74(8):1272-1282.
[31] 裴巧娜.基于光流法的运动目标检测与跟踪技术[D]. 北京:北方工业大学,2009. PEI Qiao-na. Moving objects detection and tracking techniques based optical flow[D]. Beijing:North China University of Technology, 2009.
[32] HORN B, SCHUNCH B. Determining optical flow[J]. Artificial Intelligence, 1981, 17(1-3):185-203.
[33] LUCAS B, KANADE T. An iterative image registration technique with an application to stereo vision[C]//Image Understanding Proceedings of a Workshop. Washington:[s. n.], 1981:121-130.
[34] CAVIAR test case scenarios[DB/OL].[2017-01-13].http://homepages.inf.ed.ac.uk/rbf/CAVIARDATA1/.
[35] Unusual crowd activity dataset[DB/OL].[2017-01-13]. http://mha.cs.umn.edu/proj_events.shtml.
[36] 视频监控格式[EB/OL].[2017-01-13]. https://zhidao.baidu.com/ques-tion/558546721.html. The format of video surveillance[EB/OL].[2017-01-13].https://zhi-dao.baidu.com/question/558546721.html.
[37] HANLEY J A, MCNEIL B J. The meaning and use of the area under a receiver operating characteristic (ROC) curve[J]. Radiology, 1982, 143(1):29-36.
[38] FAWCETT T. An introduction to ROC analysis[J]. Pattern Recognition Letters, 2006, 27(8):861-874. |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|