Please wait a minute...
浙江大学学报(工学版)  2017, Vol. 51 Issue (11): 2112-2120    DOI: 10.3785/j.issn.1008-973X.2017.11.003
土木与交通工程     
空间结构静力稳定分析与评定的特征刚度法
朱钊辰, 相阳, 罗永峰
同济大学 土木工程学院, 上海 200092
Characteristic stiffness method for static stability analysis and assessment of spatial structure
ZHU Zhao-chen, XIANG Yang, LUO Yong-feng
College of Civil Engineering, Tongji University, Shanghai 200092, China
 全文: PDF(1382 KB)   HTML
摘要:

为了直观反映稳定分析中结构整体性态的变化,解决荷载-位移曲线特征点的选取问题,提出特征刚度概念并导出计算公式,证明了特征刚度为零可以作为极值型屈曲结构稳定性临界状态的判定依据;结合增量累积的荷载功和结构特征位移,提出结构静力分析的全过程特征曲线,采用该曲线分析结构受载全过程中整体刚度的变化.选取一个K6型网壳和一个会议中心屋盖网壳,采用特征刚度法进行静力稳定分析,分析结果表明:计算得到的结构失稳临界荷载与基于单点荷载-位移曲线所得结果相同;相对于传统的单点荷载-位移曲线,特征曲线不依赖于结构特征点的选取,且形态稳定,可以直观反映结构整体刚度的特征.

Abstract:

A scalar quantity denoted characteristic stiffness was suggested and its calculation formula was derived in order to directly reflect the evolution of overall structural behavior in static stability analysis and solve the problem of how to properly select these representative node. The state of structure can be defined as unstable when the value of structural characteristic stiffness is equal to zero in stability analysis. The characteristic curve was proposed to describe the overall mechanical behavior of the structure among the stability analysis combined with the accumulated work increment and the characteristic displacement. The static non-linear analysis was conducted on a K6 single-layer reticulated shell and a conference center roof shell. The critical loads obtained from the characteristic curves are equal to those from single nodal load-displacement curves. The characteristic curves are more stable and easier for understanding compared with the single nodal load-displacement curves. because the characteristic curves do not rely on representative node selection and can reflect the overall structural stiffness.

收稿日期: 2016-09-26 出版日期: 2017-11-13
CLC:  TU393.3  
基金资助:

国家自然科学基金资助项目(51378379).

通讯作者: 罗永峰,男,教授.ORCID:0000-0001-8212-5605.     E-mail: yfluo93@tongji.edu.cn
作者简介: 朱钊辰(1993-),男,博士生,从事大跨度空间结构稳定分析等研究.ORCID:0000-0001-7806-3587.E-mail:1993_chen@tongji.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  

引用本文:

朱钊辰, 相阳, 罗永峰. 空间结构静力稳定分析与评定的特征刚度法[J]. 浙江大学学报(工学版), 2017, 51(11): 2112-2120.

ZHU Zhao-chen, XIANG Yang, LUO Yong-feng. Characteristic stiffness method for static stability analysis and assessment of spatial structure. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2017, 51(11): 2112-2120.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2017.11.003        http://www.zjujournals.com/eng/CN/Y2017/V51/I11/2112

[1] RIKS E. An increment approach to the solution of snapping and buckling problems[J]. International Journal of Solids and Structures, 1979, 15(5):529-551.
[2] CRISFIELD M A. An arc-length method including line searches and accelerations[J]. International Journal for Numerical Methods in Engineering, 1983, 19(9):1269-1289.
[3] 罗永峰.网壳结构弹塑性稳定及承载全过程研究[D].上海:同济大学,1991. LUO Yong-feng. Elastro-plastic stability and load bearing capability for lattice domes[D]. Shanghai:Tongji University, 1991.
[4] 罗永峰,滕锦光,沈永兴,等.结构非线性分析中求解预定荷载水平的改进弧长法[J].计算力学学报,1997,14(4):88-93. LUO Yong-feng, TENG Jin-guang, SHEN Yong-xing, et al. An improved arc-length method for searching pre-defined load levels in nonlinear analysis of structures[J]. Chinese Journal of Computational Mechanics, 1997, 14(4):88-93.
[5] 罗永峰,滕锦光,沈祖炎.确定结构分支点及跟踪平衡路径的改进弧长法[J].同济大学学报:自然科学版,1997,25(5):502-507. LUO Yong-feng, TENG Jin-guang, SHEN Zu-yan. Improved arc-length method for detecting bifurcation points and tracing buckling equilibrium path of structures[J]. Journal of Tongji University:Natural Science, 1997,25(5):502-507.
[6] 李元齐,沈祖炎.稳定分析中极值点失稳与分枝点失稳的跟踪策略及程序实现[J].土木工程学报,1998,31(3):65-71. LI Yuan-qi, SHEN Zu-yan. A study on tracing techniques for equilibrium paths of limit point types and bifurcation point types in nonlinear stability analysis[J]. China Civil Engineering Journal, 1998, 31(3):65-71.
[7] 田伟,董石麟,干钢.网壳结构考虑杆件失稳过程的整体稳定分析[J].建筑结构学报,2014,35(6):115-122. TIAN Wei, DONG Shi-lin, GAN Gang. Stability analysis method for lattice shells accounting for buckling of members[J]. Journal of Building Structures, 2014, 35(6):115-122.
[8] 张建军,刘琼祥,刘臣,等.深圳大运中心体育场钢屋盖整体稳定性能研究[J].建筑结构学报,2011,32(5):56-62. ZHANG Jian-jun, LIU Qiong-xiang, LIU Chen, et al. Research on overall stability of the Shenzhen Universidad Sports Centre[J]. Journal of Building Structures, 2011, 32(5):56-62.
[9] BERGAN P G, HORRIAMOE G. Solution techniques for non-linear finite element problems[J]. International Journal for Numerical Methods in Engineering, 1978, 12(11):1677-1696.
[10] 沈士钊,陈昕.网壳结构稳定性[M].北京:科学出版社,1999:126.
[11] 袁行飞,周练,李阿龙.基于求解运动路径的几何非线性力法的结构屈曲分析[J].土木工程学报,2013,46(6):82-89. YUAN Xing-fei, ZHOU Lian, LI A-long. Buckling analysis of structures based on geometrically nonlinear force method by solving kinematic path (GNFM-KP)[J]. China Civil Engineering Journal, 2013, 46(6):82-89.
[12] 张沛,冯健.张拉整体结构的稳定性判定及刚度分析[J].土木工程学报,2013,46(10):48-57. ZHANG Pei, FENG Jian. Stability criterion and stiffness analysis of tensegrity structures[J]. China Civil Engineering Journal, 2013, 46(10):48-57.
[13] 相阳,罗永峰,郭小农,等.空间结构弹塑性地震反应分析的简化模型与方法[J].东南大学学报:自然科学版,2015,45(4):750-755. XIANG Yang, LUO Yong-feng, GUO Xiao-nong, et al. Simplified model and procedure for elasto-plastic seismic response analysis of spatial structure[J]. Journal of Southeast University:Natural Science, 2015, 45(4):750-755.
[14] 相阳,罗永峰,郭小农,等.基于整体刚度参数的空间结构模态推覆分析[J].同济大学学报:自然科学版,2015,43(12):1771-1776. XIANG Yang, LUO Yong-feng, GUO Xiao-nong, et al. Modal pushover analysis of spatial structures based on the overall structural stiffness parameter[J]. Journal of Tongji University:Natural Science, 2015, 43(12):1771-1776.
[15] JGJ 7-2010.空间网格结构技术规程[S]. 北京:中国建筑工业出版社, 2011:3. JGJ 7-2010. Technical specification for space frame structures[S]. Beijing:China Architecture Industry Press. 2011:3.

[1] 吴俊, 罗永峰, 王磊. 既有网壳结构几何缺陷分布反演算法[J]. 浙江大学学报(工学版), 2018, 52(5): 864-872.
[2] 周泽生, 邓华, 刘承斌. 岩棉夹芯屋面板对屋盖结构风振效应的影响[J]. 浙江大学学报(工学版), 2017, 51(11): 2101-2111.