Please wait a minute...
浙江大学学报(工学版)  2017, Vol. 51 Issue (10): 1996-2004    DOI: 10.3785/j.issn.1008-973X.2017.10.014
土木工程、交通工程     
多边形比例边界有限单元非线性化方法及应用
陈楷1,2, 邹德高1,2, 孔宪京1,2, 刘京茂1,2
1. 大连理工大学 水利工程学院, 辽宁 大连 116024;
2. 大连理工大学 海岸和近海工程国家重点实验室, 辽宁 大连 116024
Novel nonlinear polygon scaled boundary finite element method and its application
CHEN Kai1,2, ZOU De-gao1,2, KONG Xian-jing1,2, LIU Jing-mao1,2
1. School of Hydraulic Engineering, Dalian University of Technology, Dalian 116024, China;
2. State Key Laboratory of Coastal and Offshore Engineering, Dalian University of Technology, Dalian 116024, China
 全文: PDF(2402 KB)   HTML
摘要:

针对当前比例边界有限元法(SBFEM)仅适用于弹性求解,无法推广至非线性应用的问题;根据三角形单元积分法则,提出在每个线单元径向覆盖的三角形引入域内高斯积分点,通过半解析的弹性解来构造用于非线性分析的单元形函数,实现了非线性多边形比例边界有限单元(NPSBFE).采用NPSBFE对经典算例Koyna大坝进行塑性损伤动力响应分析,与振动台实验及XFEM模拟结果进行比较,结果基本一致,验证了实现的NPSBFE用于非线性动力分析的可靠性.采用NPSBFE模拟考虑挤压边墙的面板堆石坝弹塑性地震动响应.用较少的网格模拟结果与有限元较密网格所得的结果吻合良好.多边形比例边界有限元可以非常灵活地处理复杂的材料分区及跨尺度区域的网格衔接问题,能够大幅减少建模难度和单元数量,提高模拟效率.

Abstract:

The scaled boundary finite element method (SBFEM) is extensively applied in elastic structure numerical simulation. However, its application cannot be expanded to nonlinear problem. A novel nonlinear polygon scaled boundary finite element (NPSBFE) was developed by introducing internal Gaussian integration points over a subdomain covered by each line element according to the integral rule of triangular element. The nonlinear shape function was constructed with the introduced points by the semi-analytical solution derived from elastic theory. The Koyna concrete dam was modeled, which was always treated as the classical research object for dynamic damage research of concrete dams. The results accorded well with the one obtained from XFEM simulation and shake table test, which verified the reliability of the accomplished method in nonlinear dynamic analysis. The response of nonlinearity under earthquake for a homogeneous concrete faced rockfill dam with extrusion sidewall was modeled by utilizing the NPSBFE and FEM, respectively. Results accorded well with the conclusion obtained from a dense FEM mesh, which indicated the robustness of NPSBFE for dealing with the material partition in complex geometries. The difficulty in modeling and numbers of elements can be significantly reduced. The NPSBFE provided prominent advantages in dealing with the optimization of material partition and cross-scale subdivision in the domain with a mesh size changing rapidly.

收稿日期: 2016-08-29 出版日期: 2017-09-27
CLC:  TV641  
基金资助:

国家重点研发计划资助项目(2017YFC0404900);国家自然科学基金资助项目(51678113;51379028);中央高校基本科研业务费资助项目(DUT17ZD219).

通讯作者: 邹德高,男,教授.ORCID:0000-0002-0551-6538.     E-mail: zoudegao@dlut.edu.cn
作者简介: 陈楷(1991-),男,博士生,从事非线性比例边界有限元数值模拟研究.ORCID:0000-0002-9851-9091.E-mail:chenkai@mail.dlut.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  

引用本文:

陈楷, 邹德高, 孔宪京, 刘京茂. 多边形比例边界有限单元非线性化方法及应用[J]. 浙江大学学报(工学版), 2017, 51(10): 1996-2004.

CHEN Kai, ZOU De-gao, KONG Xian-jing, LIU Jing-mao. Novel nonlinear polygon scaled boundary finite element method and its application. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2017, 51(10): 1996-2004.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2017.10.014        http://www.zjujournals.com/eng/CN/Y2017/V51/I10/1996

[1] WOLF J P, SONG C. Finite-element modelling of unbounded media[M]. Chichester:Wiley, 1996:65-102.
[2] WOLF J P. The scaled boundary finite element method[M]. West Sussex:Wiley, 2003:48-87.
[3] 钟红,暴艳利,林皋.基于多边形比例边界有限元的重力坝裂缝扩展过程模拟[J].水利学报, 2014, 45(增1):30-37. ZHONG Hong, BAO Yan-li, LIN Gao. Modelling of crack propagation of gravity dams based on scaled boundary polygons[J]. Journal of Hydraulic Engineering, 2014, 45(supple.1):30-37.
[4] 施明光,徐艳杰,钟红,等.基于多边形比例边界有限元的复合材料裂纹扩展模拟[J].工程力学, 2014(7):1-7. SHI Ming-guang, XU Yan-jie, ZHONG Hong, et al. Modelling of crack propagation for composite materials based on polygon scaled boundary finite elements[J]. Engineering Mechanics, 2014(7):1-7.
[5] 杜建国.基于SBFEM的大坝-库水-地基动力相互作用分析[D].大连:大连理工大学, 2007. DU Jian-guo. The dynamic interaction analysis of dam-reservoir-foundation based on SBFEM[D]. Dalian:Dalian University of Technology, 2007.
[6] LIU Jun, LIN Gao. A scaled boundary finite element method applied to electrostatic problems[J]. Engineering Analysis with Boundary Elements, 2012, 36(12):1721-1732.
[7] YANG Z J, WANG X F, YIN D S, et al. A non-matching finite element-scaled boundary finite element coupled method for linear elastic crack propagation modeling[J]. Computers and Structures, 2015, 153(2015):126-136.
[8] HUANG Y J, YANG Z J, LIU G H, et al. An efficient FE-SBFE coupled method for mesoscale cohesive fracture modeling of concrete[J]. Computational Mechanics, 2016, 58(4):1-21.
[9] 王兆清,鹿晓阳.基于平均值插值求解势问题的宏单元法[J].数值计算与计算机应用,2007, 28(3):179-187. WANG Zhao-qing, LU Xiao-yang. Macro-element approach based on mean value interpolation for solving potential problems[J]. Journal on Numerical Methods and Computer Applications, 2007, 28(3):179-187.
[10] 宋晓光,刘沈如,张景涛.应用于弹性问题的重心坐标有限元法[J].固体力学学报,2010, 31(3):310-318. SONG Xiao-guang, LIU Shen-ru, ZHANG Jing-tao. Barycentric coordinates finite element method and the application in elasticity[J]. Chinese Journal of Solid Mechanics, 2010, 31(3):310-318.
[11] MOUSAVI S E, XIAO H, SUKUMAR N. Generalized Gaussian quadrature rules on arbitrary polygons[J]. International Journal for Numerical Methods in Engineering, 2010, 82(1):99-113.
[12] 丁胜勇,邵国建.Wachspress型多边形有限元法积分方案[J].东南大学学报:自然科学版, 2013, 43(1):216-220. DING Sheng-yong, SHAO Guo-jian. Integration scheme of Wachspress interpolation polygonal finite element method[J]. Journal of Southeast University:Natural Science Edition, 2013, 43(1):216-220.
[13] NATARAJAN S, OOI E T, CHIONG I, et al. Convergence and accuracy of displacement based finite element formulations over arbitrary polygons:Laplace interpolants, strain smoothing and scaled boundary polygon formulation[J]. Finite Elements in Analysis and Design, 2014, 85(4):101-122.
[14] 罗先启,吴晓铭,童富果,等.基于挤压边墙技术水布垭面板堆石坝应力-应变研究[J].岩石力学与工程学报,2005,24(13):2342-2349. LUO Xian-qi, WU Xiao-ming, TONG Fu-guo, et al. Research on the stress-strain of shuibuya concrete face rockfill dam based on the concrete crushing-type side wall technology[J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(13):2342-2349.
[15] 童富果,田斌,孙大伟.挤压边墙对高面板坝应力-变形影响分析[C]//中国水力发电工程学会水文泥沙专业委员会2007年学术年会暨高面板技术研讨会. 昆明:[s.n.], 2007. TONG Fu-guo, TIAN Bin, SUN Da-wei. The stress and deformation of high concrete face rockfill dam for impact analysis of extrusion sidewall[C]//Journal of Hydrologic and Sediment Professional Committee of China Hydropower Engineering Institute. Academic Conference and High Panel Technology Seminar Papers Album in 2007. Kunming:[s.n.], 2007.
[16] OOI E T, SONG C, TIN-LOI F. A scaled boundary polygon formulation for elasto-plastic analyses[J]. Computer Methods in Applied Mechanics and Engineering, 2014, 268(2014):905-937.
[17] CHOPRA A K, CHAKRABARTI P. The Koyna earthquake and the damage to Koyna dam[J]. Bulletin of the Seismological Society of America, 1973,63(2):381-397.
[18] HALL J F. The dynamic and earthquake behaviour of concrete dams:review of experimental behaviour and observational evidence[J]. Soil Dynamics and Earthquake Engineering, 1988, 7(2):58-121.
[19] LEE J, FENVES G L. A plastic-damage concrete model for earthquake analysis of dams[J]. Earthquake Engineering and Structural Dynamics, 1998, 27(9):937-956.
[20] CALAYIR Y, KARATON M. A continuum damage concrete model for earthquake analysis of concrete gravity dam-reservoir systems[J]. Soil Dynamics and Earthquake Engineering, 2005, 25(11):857-869.
[21] ZHANG S, WANG G, YU X. Seismic cracking analysis of concrete gravity dams with initial cracks using the extended finite element method[J]. Engineering Structures, 2013, 56(6):528-543.
[22] WANG C, ZHANG S, SUN B, et al. Methodology for estimating probability of dynamical system's failure for concrete gravity dam[J]. Journal of Central South University, 2014, 21(2014):775-789.
[23] XU H, ZOU D, KONG X, et al. Study on the effects of hydrodynamic pressure on the dynamic stresses in slabs of high CFRD based on the scaled boundary finite-element method[J]. Soil Dynamics and Earthquake Engineering, 2016, 88(2016):223-236.
[24] XU B, ZOU D, KONG X, et al. Dynamic damageevaluation on the slabs of the concrete faced rockfill dam with the plastic-damage model[J]. Computers and Geotechnics, 2015, 65(65):258-265.
[25] ZOU D, XU B, KONG X, et al. Numerical simulation of the seismic response of the Zipingpu concrete face rockfill dam during the Wenchuan earthquake based on a generalized plasticity model[J]. Computers and Geotechnics, 2013, 49(2013):111-122.
[26] 刘京茂, 孔宪京, 邹德高. 接触面模型对面板与垫层间接触变形及面板应力的影响[J]. 岩土工程学报, 2015, 37(4):700-710. LIU Jing-mao, KONG Xian-jing, ZOU De-gao. Interface behavior between slab and cushion layer and its effects on slab stress of concrete faced rock-fill dam[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(4):700-710.

[1] 邓璇璇, 马刚, 周伟, 常晓林. 局部约束模式对单颗粒破碎强度的影响[J]. 浙江大学学报(工学版), 2018, 52(7): 1329-1337.
[2] 余翔, 孔宪京, 邹德高. 混凝土防渗墙变形与应力分布特性[J]. 浙江大学学报(工学版), 2017, 51(9): 1704-1711.