Please wait a minute...
浙江大学学报(工学版)  2017, Vol. 51 Issue (7): 1397-1404    DOI: 10.3785/j.issn.1008-973X.2017.07.018
自动化技术     
cRNA布谷鸟搜索算法的桥式吊车PID控制
朱笑花1,2, 王宁2
1. 闽南师范大学 物理与信息工程学院, 福建 漳州 363000;
2. 浙江大学 工业控制技术国家重点实验室, 浙江 杭州 310027
Cuckoo search algorithm with RNA crossover operation for PID control of overhead cranes
ZHU Xiao-hua1,2, WANG Ning2
1. College of Physics and Information Engineering, Minnan Normal University, Zhangzhou 363000, China;
2. National Laboratory of Industrial Control Technology, Zhejiang University, Hangzhou 310027, China
 全文: PDF(1341 KB)   HTML
摘要:

为了提高算法的全局搜索能力,受RNA二级结构的启发,设计RNA茎环交叉算子,采用基于进化代数的自适应步长策略,提出RNA交叉操作布谷鸟搜索算法(cRNA-CS).将cRNA-CS算法用于对5个典型测试函数进行寻优.测试结果表明,cRNA-CS算法的搜索能力和寻优精度相对于CS算法和其他改进的CS算法有了明显提高.将cRNA-CS算法用于桥式吊车系统PID控制器参数的优化整定.仿真实验结果表明,与CS算法、单纯形算法和PSO算法相比,采用cRNA-CS算法优化的PID控制器能够实现桥式吊车系统更好的消摆和定位控制.

Abstract:

A cuckoo search algorithm with RNA crossover operation (cRNA-CS) was proposed in order to improve the global search ability. In the cRNA-CS algorithm, a RNA stem loop crossover operator was designed inspired by RNA secondary structure and an evolution generation based adaptive step-size strategy was employed. The cRNA-CS algorithm was tested on five benchmark functions. Test results show that the cRNA-CS algorithm outperforms the CS algorithm and the other improved CS algorithms in search ability and accuracy. Then the cRNA-CS algorithm was applied in the parameter optimization of the PID controller of the overhead crane system. The simulation results show that the optimal PID controller based on cRNA-CS algorithm can achieve a better control performance on anti-swing and positioning than that of the CS algorithm, the simplex search algorithm and the PSO algorithm.

收稿日期: 2016-05-08 出版日期: 2017-07-08
CLC:  TP273  
基金资助:

国家“十二五”科技支撑计划资助项目(2013BAF07B03);国家自然科学基金资助项目(61573311,61403356);福建省中青年教师教育科研资助项目(JAT160285)

作者简介: 朱笑花(1980—),女,讲师,从事智能优化、建模、非线性控制的研究.ORCID:0000-0002-7872-0556.E-mail:xhzhuzz@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  

引用本文:

朱笑花, 王宁. cRNA布谷鸟搜索算法的桥式吊车PID控制[J]. 浙江大学学报(工学版), 2017, 51(7): 1397-1404.

ZHU Xiao-hua, WANG Ning. Cuckoo search algorithm with RNA crossover operation for PID control of overhead cranes. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2017, 51(7): 1397-1404.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2017.07.018        http://www.zjujournals.com/eng/CN/Y2017/V51/I7/1397

[1] SUN N, FANG Y C, CHEN H, et al. Amplitude-saturated nonlinear output feedback antiswing control for underactuated cranes with double-pendulum cargo dynamics [J]. IEEE Transactions on Industrial Electronics, 2017, 64(3): 2135-2146.
[2] ZHANG M, MA X, CHAI H, et al. A novel online motion planning method for double-pendulum overhead cranes [J]. Nonlinear Dynamics, 2016, 85(2):1079-1090.
[3] ZHANG M, MA X, RONG X, et al. Error tracking control for underactuated overhead cranes against arbitrary initial payload swing angles [J]. Mechanical Systems and Signal Processing, 2017, 84(A): 268-285.
[4] MA B, FANG Y C, ZHANG Y. Switching-based emergency braking control for an overhead crane system [J]. IET Control Theory and Applications, 2010, 4(9):1739-1747.
[5] CHEN H, FANG Y C, SUN N, A swing constraint guaranteed MPC algorithm for underactuated overhead cranes [J]. IEEE/ASME Transactions on Mechatronics, 2016, 21(5): 2543-2555.
[6] MATSUO T, YOSHINO R, SUEMITSU H, et al. Nominal performance recovery by PID+Q controller and its application to antisway control of crane lifter with visual feedback [J]. IEEE Transactions on Control Systems Technology, 2004, 12(1): 156-166.
[7] CHANG C Y, CHIANG K H, HSU S W. Fuzzy controller for the 3-D overhead crane system [C]//2005 IEEE International Conference on Robotics and Biomimetics. Shatin: IEEE, 2005: 724-729.
[8] KIM T H, MARUTA I, SUGIE T. Robust PID controller tuning based on the constrained particle swarm optimization [J]. Automatica, 2008, 44(4):1104-1110.
[9] LIN C L, JAN H Y, SHIEH N C. GA-based multiobjective PID control for a linear brushless DC motor [J]. IEEE/ASME Transactions on Mechatronics, 2003, 8(1): 56-65.
[10] JAAFAR H I, MOHAMED Z, ABIDIN A F Z, et al. PSO-tuned PID controller for a nonlinear gantry crane system [C]//2012 IEEE International Conference on Control System, Computing and Engineering (ICCSCE). Penang: IEEE, 2012: 515 - 519.
[11] YANG X S, DEB S. Cuckoo search via Lévy flights[C]//World Congress on Nature and Biologically Inspired Computing. Coimbatore: IEEE, 2009: 210 - 214.
[12] KISHNANI M, PAREEK S, GUPTA R. Optimal tuning of PID controller by cuckoo search via Lévy flights [C]//2014 International Conference on Advances in Engineering and Technology Research. Unnao: IEEE, 2015: 1-5.
[13] SABIR M M, ALI T. Optimal PID controller design through swarm intelligence algorithms for sun tracking system [J]. Applied Mathematics and Computation, 2016, 274: 690-699.
[14] 杨辉华,谢谱模,张晓凤,等.求解多目标优化问题的改进布谷鸟搜索算法 [J]. 浙江大学学报:工学版, 2015,49(8): 1600-1608. YANG Hui-hua, XIE Pu-mo, ZHANG Xiao-feng,et al.Improved cuckoo search algorithm for multi-objective optimization problems [J]. Journal of Zhejiang University: Engineering Science, 2015, 49(8): 1600-1608.
[15] NAIK M K, PANDA R. A novel adaptive cuckoo search algorithm for intrinsic discriminant analysis based face recognition [J]. Applied Soft Computing, 2016, 38: 661-675.
[16] 陈亮,卢厚清.求解连续函数优化的自适应布谷鸟搜索算法[J].解放军理工大学学报:自然科学版, 2015,16(3): 299-304. CHEN Liang, LU Hou-qing. Self-adaptive cuckoo search algorithm for continuous function optimization problems [J]. Journal of PLA University of Science and Technology: Natural Science Edition, 2015,16(3): 299-304.
[17] 王李进,尹义龙,钟一文.逐维改进的布谷鸟搜索算法[J].软件学报,2013,24(11): 2687-2698. WANG Li-jin, YIN Yi-long, ZHONG Yi-wen. Cuckoo search algorithm with dimension by dimension improvement [J]. Journal of Software, 2013, 24(11):2687-2698.
[18] HUANG J, GAO L, LI X. An effective teaching-learning-based cuckoo search algorithm for parameter optimization problems in structure designing and machining processes [J]. Applied Soft Computing, 2015,131(15): 349-356.
[19] KANAGARAJ G, PONNAMBALAM S G, JAWAHAR N. A hybrid cuckoo search and genetic algorithm for reliability-redundancy allocation problems [J]. Computers and Industrial Engineering, 2013,66(4): 1115-1124.
[20] HUANG L, DING S, YU S H, et al. Chaos-enhanced Cuckoo search optimization algorithms for global optimization [J]. Applied Mathematical Modelling, 2015, 40(5/6): 3860-3875.
[21] ZHU X H, WANG N. Cuckoo search algorithm with membrane communication mechanism for modelingoverhead crane systems using RBF Neural Networks [J]. Applied Soft Computing, 2017, 56: 458-471.
[22] 孙宁,方勇纯.一类欠驱动系统的控制方法综述[J].智能系统学报,2011,6(3): 201-207. SUN Ning,FANG Yong-chun. A review for the control of a class of underactuated systems [J]. CAAL Transactions on Intelligent Systems,2011,6(3):201-207.
[23] TAO J L, WANG N. DNA computing based RNAgenetic algorithm with applications in parameter estimation of chemical engineering processes [J]. Computers and Chemical Engineering, 2007, 31(12): 1602-1618.
[24] BUNDSCHUH R, GERLAND U. Dynamics of intramolecular recognition: base-pairing in DNA/RNA near and far from equilibrium [J]. The European Physical Journal E, 2006, 19(3): 319-329.

[1] 赵杰梅, 胡忠辉. 基于动态反馈的AUV水平面路径跟踪控制[J]. 浙江大学学报(工学版), 2018, 52(8): 1467-1473.
[2] 郑鹏远, 王针针, 相振东, 冯冬涵. 线性参数时变可测系统的混合反馈预测控制[J]. 浙江大学学报(工学版), 2018, 52(4): 703-709.
[3] 劳立明, 陈英龙, 赵玉刚, 周华. 跟踪微分器的等效线性分析及优化[J]. 浙江大学学报(工学版), 2018, 52(2): 224-232.
[4] 朱上上, 罗仕鉴, 应放天, 何基. 支持产品视觉识别的产品族设计DNA[J]. J4, 2010, 44(4): 715-721.
[5] 罗仕鉴, 翁建广, 陈实, 等. 基于情境的产品族设计风格DNA[J]. J4, 2009, 43(6): 1112-1117.
[6] 侯鑫, 李平, 韩波, 等. 小型无人直升机分层混杂控制系统[J]. J4, 2009, 43(5): 796-800.
[7] 王晔, 刘山. 期望轨迹可变的非线性时变系统迭代学习控制[J]. J4, 2009, 43(5): 839-843.