Please wait a minute...
浙江大学学报(工学版)
机械与能源工程     
内孔拉削动态负载计算模型
倪敬, 顾瞻华, 杨肖
杭州电子科技大学 机械工程学院,船港机械装备与技术省重点实验室,浙江 杭州 310018
Dynamic load computing model for inner hole broaching
NI Jing, GU Zhan-hua, YANG Xiao
School of Mechanical Engineering, Key laboratory of Mechanical Equipment and Technology for Marine Machinery, Hangzhou Dianzi University, Hangzhou 310018, China
 全文: PDF(3176 KB)   HTML
摘要:

针对圆孔拉削负载计算误差大、负载动特性预测精度低的问题,综合考虑圆孔的圆弧效应、刀齿的刮削效应以及刀齿与工件接触的周期特性,建立计算和预测拉削负载模型.基于Johnson-Cook模型,对每个刀齿的切削剖面进行详细划分,计算圆弧效应对拉削负载的影响.针对刀具与工件的接触状态,考虑拉削过程中每个刀齿切削与刮削占比不同的效应,进一步优化拉削负载计算模型.考虑刀具与工件接触过程中刀齿数周期变化的特性,将拉削过程分成3个阶段(工件与刀齿接触初期、工件与刀齿完全接触时期以及工件与刀齿脱离时期).仿真和试验结果表明,所建立的拉削负载计算模型能够准确描述拉削负载动特性,平均计算误差小于13%.

Abstract:
A calculating and predicting broaching model was established aiming at the problem that the calculating broaching load of round hole has big error and that the dynamic load has poor predictioin accuracy, in which the circle effect of round hole, scraping effect of cutter and cyclic contact characteristics between cutter and workpiece were synthetically considered. Based on the Johnson-Cook model, circle effect on broaching load was calculated by dividing the cutting profile of each cutter in detail. Moreover, on account of the contact state between cutter and workpiece, the calculating broaching load model was further optimized through regarding cutting and scraping with different proportions of each other in each cutter during broaching process. Considering the cyclic contact characteristics of the cutter teeth number between cutter and workpiece, dynamic broaching load was calculated exactly by dividing broaching process into three phases: the initial contact stage of workpiece and cutter tooth, the complete contact stage of workpiece and cutter tooth, and the separating stage of workpiece and cutter tooth. Simulation and test results show that the proposed model can better predict the characteristic of dynamic broaching load; the average calculation error is less than 13%.
出版日期: 2017-03-01
CLC:  TG 57  
基金资助:

国家自然科学基金资助项目(51375129)

通讯作者: 杨肖,男,讲师. ORCID:0000-0002-9857-2909.     E-mail: yangxiao0431@foxmail.com
作者简介: 倪敬(1979—),男,教授,从事切削系统动特性研究.ORCID: 0000-0003-4973-7241. E-mail: nijing2000@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  

引用本文:

倪敬, 顾瞻华, 杨肖. 内孔拉削动态负载计算模型[J]. 浙江大学学报(工学版), 10.3785/j.issn.1008-973X.2017.03.003.

NI Jing, GU Zhan-hua, YANG Xiao. Dynamic load computing model for inner hole broaching. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 10.3785/j.issn.1008-973X.2017.03.003.

[1] SCHROETER R B,BASTOS C M,CRICHIGNO FILHOJ M. Simulation of the main cutting force in Crankshaft turn broaching [J]. International Journal of Machine Tools and Manufacture,2007,47(12): 1884-1892.
[2] CHOLPADI R K, KUTTAN A. Mechanistic force modeling for broaching process \[J\]. International Journal of Manufacturing Engineering, 2014, 2014: 110.
[3] KLOCKE F,GIERLINGS S,BROCKMANN M,et al. Force-based temperature modeling for surface integrity prediction in broaching nickel-based alloys [J]. Procedia CIRP,2014,13: 314-319.
[4] HOSSAM A K,ALI H,BEHNAM M I,et al. An energy based analysis of broaching operation: cutting forces and resultant surface integrity [J]. CIRPAnnalsManufacturing Technology,2012,61(1): 107-110.
[5] 董辉跃,朱灵盛,章明,等.飞机蒙皮切边的螺旋铣削方法[J].浙江大学学报:工学版,2015,49(11):  2033-2039.
DONG Hui-yue,ZHU Ling-sheng,ZHANG Ming,et al. Orbital milling method of aircraft skins trimming [J]. Journal of Zhejiang University: Engineering Science,2015,49(11): 2033-2039.
[6] 李刚,王扬渝,王慧强,等.基于斜角切削模型的机夹式球头铣刀切削力预测研究[J].制造技术与机床,2014,6: 86-89.
LI Gang,WANG Yang-yu,WANG Hui-qiang,et al. Cutting force prediction of ball end mill based on oblique cutting model [J]. Manufacturing Technology and Machine Tools,2014,6: 86-89.
[7] 仇健,李晓飞,马晓波,等. 硬质合金立铣刀高速铣削铝合金切削力实验研究[J]. 中国机械工程,2012,23(13): 1555-1560.
Qiu Jian,LI Xiao-fei,MA Xiao-bo,et al Experimental study of cutting forces on high speed milling aluminum alloy using carbide end mill [J]. China Mechanical Engineering,2012,23(13): 1555-1560.
[8] HOSSEINIH A, KISHAWY H A, Prediction of cutting forces in broaching operation [J]. Journal of Advanced Manufacturing Systems,2013,12(1):114.
[9] 吴继华,刘战强.正交微切削中切削力预测模型研究[J].武汉理工大学学报:交通科学与工程版,2010,34(1): 130-133.
WU Ji-hua, LIU Zhan-qiang. Predaction of forces in orthogonal micro-cutting based on strain gradient theory [J]. Journal of Wuhan University of Technology: Transportation Science and Engineering,2010,34(1):130-133.
[10] 魏兆成,王敏杰,蔡玉俊,等.球头铣刀三维曲面加工的铣削力预报[J].机械工程学报,2013,49(1): 178-184.
WEI Zhao-cheng,WANG Min-jie,CAI Yu-jun,et al. Milling force prediction for ball-end milling of 3D curved surfaces [J]. Journal of Mechanical Engineering,2013,49(1): 178-184.
[11] VOGTEL P,KLOCKE F,PULS H,et al. Modelling of process forces in broaching Inconel 718 [J]. Procedia CIRP,2013,8: 409-414.
[12] SCHULZE V,BOVE N,ZANGER F. Simulation of metal cutting process with variable cutting thickness during broaching [J]. Procedia CIRP,2012,1: 437-442.
[13] SCHULZE V,BOVE N,ZANGER F. Numerical investigation of the changing cutting force caused by the effects of process machine interaction while broaching [J]. Procedia CIRP,2012,4: 140-145.
[14] 凌玲,李星星,王学林,等. OCr18Ni9不锈钢本构模型及其对切削力预测影响分析[J].中国机械工程,2012,23(18): 2243-2248.
LING Ling,LI Xing-xing,WANG Xue-lin,et al. Constitutive model of stainless steel OCr18Ni9 and its influence on cutting force prediction [J]. China Mechanical Engineering,2012,23(18): 2243-2248.
[15] 李炳林,胡于进,王学林,等.基于斜角切削理论的立铣切削力预测研究[J].中国机械工程,2011,22(19): 2283-2288.
LI Bing-lin,HU Yu-jin,WANG Xue-lin,et al. Cutting force prediction based on oblique cutting theory in end milling \[J\]. China Mechanical Engineering, 2011,22(19): 2283-2288.
[16] GRZESEK W. Advanced machining processes of metallic materials [M]. London: Elsvier, 2008: 83.
[17] SHAW M C. Metal cutting principles [M]. New York: Oxford University Press,1984, 18(1):55.
[18] 陈刚,陈忠富,陶俊林,等.45钢动态塑性本构参量与验证[J].爆炸与冲击,2005,25(5): 451-456.
CHEN Gang,CHEN Zhong-fu,TAO Jun-lin,et al. Constitutive parameters and verification of 45 steeldynamic plasticity [J]. Explosion and Shock Waves,2005,25(5): 451-456.
No related articles found!