| 
					
						| 
								
									| 电气工程 |  |   |  |  
    					|  |  
    					| 基于同步控制的微网多工况小信号稳定分析 |  
						| 卢泽汉1,兰洲2,吴晶莹3,汪震1,辛焕海1 |  
					| 1. 浙江大学 电气工程学院, 浙江 杭州 310027; 2. 国网浙江省电力经济技术研究院,浙江 杭州 310009; 3. 国网浙江省电力公司杭州供电公司,浙江 杭州 310009 |  
						|  |  
    					| Small signal stability analysis of synchronized control based microgrid under multiple operating conditions |  
						| LU Ze han1, LAN Zhou2, WU Jing ying3, WANG Zhen1, XIN Huan hai1 |  
						| 1. College of Electrical Engineering, Zhejiang University, Hangzhou 310027, China;2. Economic Research Institute of State Grid Zhejiang Electric Power Company, Hangzhou 310009, China;3. Hangzhou Power Supply Company of State Grid Zhejiang Electric Power Company, Hangzhou 310009, China |  
					
						| 
								
									|  
          
          
            
             
												
												
												| 
												
												引用本文:
																																卢泽汉,兰洲,吴晶莹,汪震,辛焕海. 基于同步控制的微网多工况小信号稳定分析[J]. 浙江大学学报(工学版), 10.3785/j.issn.1008-973X.2016.03.001.
																															 
																																LU Ze han, LAN Zhou, WU Jing ying, WANG Zhen, XIN Huan hai. Small signal stability analysis of synchronized control based microgrid under multiple operating conditions. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 10.3785/j.issn.1008-973X.2016.03.001.
																															 链接本文: 
																																	
																	http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2016.03.001
																	   或   
																																
																http://www.zjujournals.com/eng/CN/Y2016/V50/I2/0
														    |  
            
									            
									                
																														  
																| [1] MARGARIS I D, PAPATHANASSIOU S A, HATZIARGYRIOU N D, et al. Frequency control in autonomous power systems with high wind power penetration [J]. IEEE Transactions on Sustainable Energy, 2012, 3(2): 189-199.[2] MORREN J, HAAN S, KLING W L, et al. Wind turbines emulating inertia and supporting primary frequency control [J]. IEEE Transactions on Power Systems, 2006, 21(1): 433-434.
 [3] HUGHES F M, ANAYA LARA O, JENKINS N, et al. Control of DFIG based wind generation for power network support [J]. IEEE Transactions on Power Systems, 2005, 20(4): 1958-1966.
 [4] 杜威,姜齐荣,陈蛟瑞. 微电网电源的虚拟惯性频率控制策略[J]. 电力系统自动化,2011,35(23):26-36.
 DU Wei, JIANG Qi rong, CHEN Jiao rui. Frequency control strategy of distributed generations based on virtual inertia in a microgrid [J]. Automation of Electric Power Systems, 2011, 5(23): 26-36.
 [5] CARDENAS R, PENA R, ASHER G, et al. Power smoothing in wind generation systems using a sensorless vector controlled induction machine driving a flywheel [J]. IEEE
 Transactions on Energy Conversion, 2004, 19(1): 206-216.
 [6] LALOR G, MULLANE A, O'MALLEY M. Frequency control and wind turbine technologies [J]. IEEE Transactions on Power Systems, 2005, 20(4): 19051913.
 [7] MAURICIO J M, MARANO A, GOMEZ EXPOSITO A, et al. Frequency regulation contribution through variable speed wind energy conversion systems [J]. IEEE Transactions on Power Systems, 2009, 24(1): 173-180.
 [8] WANG Y, DELILLE G, BAYEM H, et al. High wind power penetration in isolated power systems assessment of wind inertial and primary frequency responses [J]. IEEE Transactions on Power Systems, 2013, 28(3): 2412-2420.
 [9] PENA R, CLARE J C, ASHER G M. A doubly fed induction generator using back to back PWM converters supplying an isolated load from a variable speed wind turbine [J]. IEEE Proceedings:Electric Power Applications, 1996, 143(5): 380-387.
 [10] PENA R, CLARE J C, ASHER G M. Doubly fed induction generator using back to back PWM converters and its application to variable speed wind energy generation [J]. IEEE Proceedings:Electric Power Applications, 1996, 143(3): 231-241.
 [11] PENA R, CARDENASB R, ESCOBARB E, et al. Control strategy for a doubly fed induction generator feeding an unbalanced grid or stand alone load [J]. Electric Power Systems Research, 2009, 79(2): 355-364.
 [12] KATIRAEI F, IRAVANI M R, LEHN P W. Small signal dynamic model of a micro grid including conventional and electronically interfaced distributed resources [J]. IET Generation Transmission and Distribution, 2007, 1(3): 369-378.
 [13] RUEDA J L, GUAMAN W H, CEPEDA J C, et al. Hybrid approach for power system operational planning with smart grid and small signal stability enhancement considerations [J]. IEEE Transactions on Smart Grid, 2013, 4(1): 530-539.
 [14] YANG L H, XU Z, OSTERGAARD J, et al. Oscillatory stability and eigenvalue sensitivity analysis of a DFIG wind turbine system [J]. IEEE Transactions on Energy Conversion, 2011, 26(1): 328-339.
 [15] YANG L H, YANG G Y, XU Z, et al. Optimal controller design of a doubly fed induction generator wind turbine system for small signal stability enhancement [J]. IET Generation Transmission and Distribution, 2010, 4(5): 579-597.
 [16] ABAD G, LOPEZ J, RODRIGUEZ M, et al. Doubly fed induction machine modeling and control for wind energy generation [M]. London: Wiley Press, 2011:213-287.
 [17] ROCABERT J, LUNA A, BLAABJERG F, et al. Control of power converters in AC microgrids [J]. IEEE Transactions on Power Electronics, 2012, 27(11): 4734-4749.
 [18] BARKLUND E, POGAKU N, PRODANOVIC M, et al. Energy management in autonomous microgrid using stability constrained droop control of inverters [J]. IEEE Transactions on Power Systems, 2008, 23(5): 2346-2352.
   |  
             
												
											    	
											        	|  | Viewed |  
											        	|  |  |  
												        |  | Full text 
 | 
 
 |  
												        |  |  |  
												        |  | Abstract 
 | 
 |  
												        |  |  |  
												        |  | Cited |  |  
												        |  |  |  |  
													    |  | Shared |  |  
													    |  |  |  |  
													    |  | Discussed |  |  |  |  |